1. Formula for Magnetic Potential on the Axis of a Dipole:
V = \(\frac{\mu_0 M}{4 \pi r^2}\)
- Where: - \(V = 1.5 \times 10^{-5} \, \text{Tm}\) - \(\frac{\mu_0}{4 \pi} = 10^{-7} \, \text{Tm/A}\) - \(r = 20 \, \text{cm} = 0.2 \, \text{m}\)
Step 2: Rearrange to Solve for M:
\(M = \frac{V \cdot r^2}{\frac{\mu_0}{4 \pi}}\)
Step 3: Substitute Values:
\(M = \frac{1.5 \times 10^{-5} \times (0.2)^2}{10^{-7}}\)
\(M = \frac{1.5 \times 10^{-5} \times 4 \times 10^{-2}}{10^{-7}}\)
Step 4: Simplify Calculation:
\(M = \frac{1.5 \times 4 \times 10^{-7}}{10^{-7}}\)
\(M = 6 \, \text{Am}^2\)
So, the correct answer is: \(M = 6 \, \text{Am}^2\)
The relationship between the magnetic susceptibility $ \chi $ and the magnetic permeability $ \mu $ is given by:
$ \mu_0 $ is the permeability of free space and $ \mu_r $ is relative permeability.
Given below are two statements : one is labelled as Assertion A and the other is labelled as Reason R.
Assertion A : If oxygen ion (O\(^{-2}\)) and Hydrogen ion (H\(^{+}\)) enter normal to the magnetic field with equal momentum, then the path of O\(^{-2}\) ion has a smaller curvature than that of H\(^{+}\).
Reason R : A proton with same linear momentum as an electron will form a path of smaller radius of curvature on entering a uniform magnetic field perpendicularly.
In the light of the above statements, choose the correct answer from the options given below