1. Formula for Magnetic Potential on the Axis of a Dipole:
V = \(\frac{\mu_0 M}{4 \pi r^2}\)
- Where: - \(V = 1.5 \times 10^{-5} \, \text{Tm}\) - \(\frac{\mu_0}{4 \pi} = 10^{-7} \, \text{Tm/A}\) - \(r = 20 \, \text{cm} = 0.2 \, \text{m}\)
Step 2: Rearrange to Solve for M:
\(M = \frac{V \cdot r^2}{\frac{\mu_0}{4 \pi}}\)
Step 3: Substitute Values:
\(M = \frac{1.5 \times 10^{-5} \times (0.2)^2}{10^{-7}}\)
\(M = \frac{1.5 \times 10^{-5} \times 4 \times 10^{-2}}{10^{-7}}\)
Step 4: Simplify Calculation:
\(M = \frac{1.5 \times 4 \times 10^{-7}}{10^{-7}}\)
\(M = 6 \, \text{Am}^2\)
So, the correct answer is: \(M = 6 \, \text{Am}^2\)
A current-carrying coil is placed in an external uniform magnetic field. The coil is free to turn in the magnetic field. What is the net force acting on the coil? Obtain the orientation of the coil in stable equilibrium. Show that in this orientation the flux of the total field (field produced by the loop + external field) through the coil is maximum.