1. Formula for Magnetic Potential on the Axis of a Dipole:
V = \(\frac{\mu_0 M}{4 \pi r^2}\)
- Where: - \(V = 1.5 \times 10^{-5} \, \text{Tm}\) - \(\frac{\mu_0}{4 \pi} = 10^{-7} \, \text{Tm/A}\) - \(r = 20 \, \text{cm} = 0.2 \, \text{m}\)
Step 2: Rearrange to Solve for M:
\(M = \frac{V \cdot r^2}{\frac{\mu_0}{4 \pi}}\)
Step 3: Substitute Values:
\(M = \frac{1.5 \times 10^{-5} \times (0.2)^2}{10^{-7}}\)
\(M = \frac{1.5 \times 10^{-5} \times 4 \times 10^{-2}}{10^{-7}}\)
Step 4: Simplify Calculation:
\(M = \frac{1.5 \times 4 \times 10^{-7}}{10^{-7}}\)
\(M = 6 \, \text{Am}^2\)
So, the correct answer is: \(M = 6 \, \text{Am}^2\)
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: