Solution: For an electromagnetic wave, the magnetic and electric fields are related by the equation:
\( E = cB \),
where \( c \) is the speed of light in a vacuum.
Given:
\( B_y = (3.5 \times 10^{-7}) \sin (1.5 \times 10^3 x + 0.5 \times 10^{11} t) \, \text{T} \),
we know that the amplitude of the electric field is:
\( E_z = c B_y = (3 \times 10^8)(3.5 \times 10^{-7}) \, \text{V/m} = 105 \, \text{V/m}. \)
Thus, the correct electric field is:
\( E_z = 105 \sin (1.5 \times 10^3 x + 0.5 \times 10^{11} t) \, \text{V/m}. \)
The unit of $ \sqrt{\frac{2I}{\epsilon_0 c}} $ is: (Where $ I $ is the intensity of an electromagnetic wave, and $ c $ is the speed of light)
The dimension of $ \sqrt{\frac{\mu_0}{\epsilon_0}} $ is equal to that of: (Where $ \mu_0 $ is the vacuum permeability and $ \epsilon_0 $ is the vacuum permittivity)
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: