Let \( z = x + iy \). Then:
\[
|z|^2 = x^2 + y^2,\quad \text{Re}(z) = x
\]
So the equation becomes:
\[
x^2 + y^2 = x \Rightarrow x^2 - x + y^2 = 0
\]
Complete the square:
\[
x^2 - x + \frac{1}{4} + y^2 = \frac{1}{4}
\Rightarrow \left(x - \frac{1}{2}\right)^2 + y^2 = \left(\frac{1}{2}\right)^2
\]
This is the equation of a circle with:
- Centre \( \left(\frac{1}{2}, 0 \right) \)
- Radius \( \frac{1}{2} \)