Given:
- Lines \( L_{2n-1} \) (\( n = 1, 2, \dots, 10 \)) are parallel to each other.
- Lines \( L_{2n} \) (\( n = 1, 2, \dots, 10 \)) pass through a common point \( P \).
Step 1: Points of Intersection between \( L_{2n-1} \) and \( L_{2m} \)
Since all \( L_{2n-1} \) lines are parallel, they do not intersect among themselves. Similarly, all \( L_{2n} \) lines pass through the point \( P \), so they intersect at \( P \) and do not form additional intersection points among themselves.
However, each line \( L_{2n-1} \) intersects each line \( L_{2m} \) exactly once (since they are not parallel), leading to:
\[ 10 \times 10 = 100 \text{ intersection points} \]
Step 2: Points of Intersection among \( L_{2n} \) Lines
All \( L_{2n} \) lines pass through the common point \( P \). Therefore, there is exactly one intersection point among these lines at \( P \).
Step 3: Total Number of Points of Intersection
The total number of points of intersection is given by:
\[ 100 + 1 = 101 \]
Conclusion: The maximum number of points of intersection of pairs of lines from the set \( \{L_1, L_2, \dots, L_{20}\} \) is 101.
The number of 6-letter words, with or without meaning, that can be formed using the letters of the word MATHS such that any letter that appears in the word must appear at least twice, is $ 4 \_\_\_\_\_$.
If all the words with or without meaning made using all the letters of the word "KANPUR" are arranged as in a dictionary, then the word at 440th position in this arrangement is:
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \[ (\sin x \cos y)(f(2x + 2y) - f(2x - 2y)) = (\cos x \sin y)(f(2x + 2y) + f(2x - 2y)), \] for all \( x, y \in \mathbb{R}. \)
If \( f'(0) = \frac{1}{2} \), then the value of \( 24f''\left( \frac{5\pi}{3} \right) \) is: