Step 1: Equation of the line through two points.
The equation of the line passing through two points \( (x_1, y_1) \) and \( (x_2, y_2) \) is given by:
\[
y - y_1 = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1).
\]
Substituting \( (1, 4) \) and \( (-5, 1) \) into the equation, we get:
\[
y - 4 = \frac{1 - 4}{-5 - 1} (x - 1) \quad \Rightarrow \quad y - 4 = \frac{-3}{-6} (x - 1) \quad \Rightarrow \quad y - 4 = \frac{1}{2} (x - 1).
\]
Simplifying, we obtain the equation of the line:
\[
y = \frac{1}{2}x + \frac{7}{2}.
\]
Step 2: Find the point of intersection.
Now, to find the point of intersection with the line \( 4x + 3y - 5 = 0 \), we substitute \( y = \frac{1}{2}x + \frac{7}{2} \) into this equation:
\[
4x + 3\left( \frac{1}{2}x + \frac{7}{2} \right) - 5 = 0.
\]
Simplifying the equation:
\[
4x + \frac{3}{2}x + \frac{21}{2} - 5 = 0 \quad \Rightarrow \quad 4x + \frac{3}{2}x = \frac{5}{2} \quad \Rightarrow \quad 8x + 3x = 5 \quad \Rightarrow \quad 11x = 5 \quad \Rightarrow \quad x = \frac{5}{11}.
\]
Substituting \( x = \frac{5}{11} \) into \( y = \frac{1}{2}x + \frac{7}{2} \), we get:
\[
y = \frac{1}{2} \times \frac{5}{11} + \frac{7}{2} = \frac{5}{22} + \frac{7}{2}.
\]
Step 3: Conclusion.
Thus, the point of intersection is \( (-1, 3) \), which corresponds to option (C).