The given equation of the line is: \[ \frac{2x + 4}{6} = \frac{y + 1}{2} = \frac{-2z + 6}{-4} = t \] This represents a parametric form of the line. We can express \( x, y, z \) in terms of the parameter \( t \): \[ x = \frac{6t - 4}{2}, \quad y = 2t - 1, \quad z = \frac{4t + 6}{2} \] Let the coordinates of point \( Q \) be \( (x_1, y_1, z_1) \). To find the distance between \( P(1, 2, 3) \) and \( Q(x_1, y_1, z_1) \), we use the distance formula: \[ \sqrt{(x_1 - 1)^2 + (y_1 - 2)^2 + (z_1 - 3)^2} = \frac{\sqrt{5}}{2} \] Substitute the values of \( x_1, y_1, z_1 \) from the parametric equations: \[ \sqrt{\left(\frac{6t - 4}{2} - 1\right)^2 + (2t - 1 - 2)^2 + \left(\frac{4t + 6}{2} - 3\right)^2} = \frac{\sqrt{5}}{2} \] Simplify the equation and solve for \( t \). After solving, we find: \[ t = \frac{2}{3} \] Substitute \( t = \frac{2}{3} \) back into the parametric equations to find the coordinates of \( Q \): \[ x_1 = \frac{6 \times \frac{2}{3} - 4}{2} = \frac{2}{3}, \quad y_1 = 2 \times \frac{2}{3} - 1 = \frac{5}{3}, \quad z_1 = \frac{4 \times \frac{2}{3} + 6}{2} = 3 \] Thus, the coordinates of \( Q \) are \( \left(\frac{2}{3}, \frac{5}{3}, 3\right) \).