Problem:
Let point \( P(x, y) \) be equidistant from points \( A(7, 1) \) and \( B(3, 5) \).
We are to find the relationship between \( x \) and \( y \).
Step 1: Use the definition of equidistant
If \( P \) is equidistant from \( A \) and \( B \), then:
\[
PA = PB
\]
Apply the distance formula:
\[
\sqrt{(x - 7)^2 + (y - 1)^2} = \sqrt{(x - 3)^2 + (y - 5)^2}
\]
Step 2: Square both sides to eliminate square roots
\[
(x - 7)^2 + (y - 1)^2 = (x - 3)^2 + (y - 5)^2
\]
Step 3: Expand both sides
Left-hand side:
\[
(x - 7)^2 = x^2 - 14x + 49 \\
(y - 1)^2 = y^2 - 2y + 1 \\
\Rightarrow x^2 - 14x + 49 + y^2 - 2y + 1 = x^2 + y^2 - 14x - 2y + 50
\]
Right-hand side:
\[
(x - 3)^2 = x^2 - 6x + 9 \\
(y - 5)^2 = y^2 - 10y + 25 \\
\Rightarrow x^2 - 6x + 9 + y^2 - 10y + 25 = x^2 + y^2 - 6x - 10y + 34
\]
Step 4: Cancel like terms on both sides
Remove \( x^2 \) and \( y^2 \) from both sides:
\[
-14x - 2y + 50 = -6x - 10y + 34
\]
Step 5: Bring all terms to one side
\[
-14x + 6x - 2y + 10y = 34 - 50
\Rightarrow -8x + 8y = -16
\]
Step 6: Simplify
\[
-8x + 8y = -16 \Rightarrow x = y + 2
\]
Final Answer:
The abscissa (x-coordinate) is \( \boxed{2 \text{ more than the ordinate (y-coordinate)}} \), i.e., \( \boxed{x = y + 2} \)