Step 1: Write the plane in Cartesian form.
Given
\[
\vec r \cdot (i - 2j + 3k) = 14
\]
This represents the plane
\[
x - 2y + 3z - 14 = 0
\]
Step 2: Use the formula for distance from origin to a plane.
The distance of the plane
\[
ax + by + cz + d = 0
\]
from the origin is
\[
\frac{|d|}{\sqrt{a^2 + b^2 + c^2}}
\]
Step 3: Substitute the values.
Here \(a=1,\ b=-2,\ c=3,\ d=-14\).
\[
\text{Distance} = \frac{14}{\sqrt{1^2 + (-2)^2 + 3^2}}
= \frac{14}{\sqrt{14}}
= \sqrt{14}
\]