To determine the force acting on a wire segment due to a magnetic field, we use the formula for the magnetic force on a current-carrying wire:
\( \mathbf{F} = I \mathbf{L} \times \mathbf{B} \)
Where:
\( I \) is the current (0.5 A), \( \mathbf{L} \) is the length vector of the wire, and \( \mathbf{B} \) is the magnetic field vector.
The wire lies along the x-axis, and is 1 cm long, so its length vector is:
\( \mathbf{L} = (0.01 \, \text{m}) \hat{i} \)
Given the magnetic field vector:
\( \mathbf{B} = (0.4 \, \text{mT}) \hat{j} + (0.6 \, \text{mT}) \hat{k} \)
Convert milliteslas to teslas:
\( \mathbf{B} = (0.4 \times 10^{-3} \, \text{T}) \hat{j} + (0.6 \times 10^{-3} \, \text{T}) \hat{k} \)
Now, compute the cross product \( \mathbf{L} \times \mathbf{B} \):
\( \mathbf{L} \times \mathbf{B} = (0.01 \hat{i}) \times (0.4 \times 10^{-3} \hat{j} + 0.6 \times 10^{-3} \hat{k}) \)
Using the cross product rule:
Calculate:
\( \mathbf{L} \times \mathbf{B} = 0.01(0.4 \times 10^{-3}) \hat{k} + 0.01(-0.6 \times 10^{-3}) (-\hat{j}) \)
\( = (0.4 \times 10^{-5}) \hat{k} - (0.6 \times 10^{-5}) \hat{j} \)
\( = (-0.6 \times 10^{-5}) \hat{j} + (0.4 \times 10^{-5}) \hat{k} \)
The magnitude of current \( I = 0.5 \, \text{A} \), so:
\( \mathbf{F} = 0.5((-0.6 \times 10^{-5}) \hat{j} + (0.4 \times 10^{-5}) \hat{k}) \)
\( = (-0.3 \times 10^{-5} \, \text{N}) \hat{j} + (0.2 \times 10^{-5} \, \text{N}) \hat{k} \)
Convert to micro Newtons (\( 1 \, \text{N} = 10^6 \, \mu\text{N} \)):
\( = (-3 \hat{j} + 2 \hat{k}) \, \mu\text{N} \)
Therefore, the force on the segment is: \((-3\hat{j} + 2\hat{k}) \, \mu\text{N}\).
Prove that:
\( \tan^{-1}(\sqrt{x}) = \frac{1}{2} \cos^{-1}\left( \frac{1 - x}{1 + x} \right), \quad x \in [0, 1] \)