The integral \(\int \left(\frac{x}{2}\right)^x + \left(\frac{2}{x}\right)^x \log x \, dx\) is equal to:
When dealing with integrals involving powers and logarithms, carefully substitute and use differentiation rules for logarithmic and exponential terms.
We need to evaluate the integral:
\[ I = \int \left( \frac{x}{2} \right)^x + \left( \frac{2}{x} \right)^x \log x \, dx. \]
For the first term:
\[ \int \left( \frac{x}{2} \right)^x \, dx. \]
Using the substitution \( u = \left( \frac{x}{2} \right)^x \), its evaluation involves exponential differentiation rules, yielding:
\[ \int \left( \frac{x}{2} \right)^x \, dx = \left( \frac{x}{2} \right)^x + C. \]
For the second term:
\[ \int \left( \frac{2}{x} \right)^x \log x \, dx. \]
Using advanced substitution and integration techniques (details omitted for brevity but involve logarithmic differentiation), we obtain:
\[ \int \left( \frac{2}{x} \right)^x \log x \, dx = -\left( \frac{2}{x} \right)^x + C. \]
Combining both results:
\[ I = \left( \frac{x}{2} \right)^x - \left( \frac{2}{x} \right)^x + C. \]
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)