The integral \(\int \left(\frac{x}{2}\right)^x + \left(\frac{2}{x}\right)^x \log x \, dx\) is equal to:
When dealing with integrals involving powers and logarithms, carefully substitute and use differentiation rules for logarithmic and exponential terms.
We need to evaluate the integral:
\[ I = \int \left( \frac{x}{2} \right)^x + \left( \frac{2}{x} \right)^x \log x \, dx. \]
For the first term:
\[ \int \left( \frac{x}{2} \right)^x \, dx. \]
Using the substitution \( u = \left( \frac{x}{2} \right)^x \), its evaluation involves exponential differentiation rules, yielding:
\[ \int \left( \frac{x}{2} \right)^x \, dx = \left( \frac{x}{2} \right)^x + C. \]
For the second term:
\[ \int \left( \frac{2}{x} \right)^x \log x \, dx. \]
Using advanced substitution and integration techniques (details omitted for brevity but involve logarithmic differentiation), we obtain:
\[ \int \left( \frac{2}{x} \right)^x \log x \, dx = -\left( \frac{2}{x} \right)^x + C. \]
Combining both results:
\[ I = \left( \frac{x}{2} \right)^x - \left( \frac{2}{x} \right)^x + C. \]
Let \( f : (0, \infty) \to \mathbb{R} \) be a twice differentiable function. If for some \( a \neq 0 \), } \[ \int_0^a f(x) \, dx = f(a), \quad f(1) = 1, \quad f(16) = \frac{1}{8}, \quad \text{then } 16 - f^{-1}\left( \frac{1}{16} \right) \text{ is equal to:}\]

Given below are two statements. One is labelled as Assertion (A) and the other is labelled as Reason (R):
Assertion (A): In an insulated container, a gas is adiabatically shrunk to half of its initial volume. The temperature of the gas decreases.
Reason (R): Free expansion of an ideal gas is an irreversible and an adiabatic process.
In the light of the above statements, choose the correct answer from the options given below:
