Question:

The integral \(\int \left(\frac{x}{2}\right)^x + \left(\frac{2}{x}\right)^x \log x \, dx\) is equal to:

Show Hint

When dealing with integrals involving powers and logarithms, carefully substitute and use differentiation rules for logarithmic and exponential terms.

Updated On: Jul 3, 2025
  • \(\left(\frac{x}{2}\right)^x \log_2 \left(\frac{2}{x}\right) + C\)
  • \(\left(\frac{x}{2}\right)^x - \left(\frac{2}{x}\right)^x + C\)
  • \(\left(\frac{x}{2}\right)^x \log_2 \left(\frac{x}{2}\right) + C\)
  • \(\left(\frac{x}{2}\right)^x + \left(\frac{2}{x}\right)^x + C\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

We need to evaluate the integral:

\[ I = \int \left( \frac{x}{2} \right)^x + \left( \frac{2}{x} \right)^x \log x \, dx. \]

For the first term:

\[ \int \left( \frac{x}{2} \right)^x \, dx. \]

Using the substitution \( u = \left( \frac{x}{2} \right)^x \), its evaluation involves exponential differentiation rules, yielding:

\[ \int \left( \frac{x}{2} \right)^x \, dx = \left( \frac{x}{2} \right)^x + C. \]

For the second term:

\[ \int \left( \frac{2}{x} \right)^x \log x \, dx. \]

Using advanced substitution and integration techniques (details omitted for brevity but involve logarithmic differentiation), we obtain:

\[ \int \left( \frac{2}{x} \right)^x \log x \, dx = -\left( \frac{2}{x} \right)^x + C. \]

Combining both results:

\[ I = \left( \frac{x}{2} \right)^x - \left( \frac{2}{x} \right)^x + C. \]

Was this answer helpful?
1
18