The integral \(\int \left(\frac{x}{2}\right)^x + \left(\frac{2}{x}\right)^x \log x \, dx\) is equal to:
When dealing with integrals involving powers and logarithms, carefully substitute and use differentiation rules for logarithmic and exponential terms.
We need to evaluate the integral:
\[ I = \int \left( \frac{x}{2} \right)^x + \left( \frac{2}{x} \right)^x \log x \, dx. \]
For the first term:
\[ \int \left( \frac{x}{2} \right)^x \, dx. \]
Using the substitution \( u = \left( \frac{x}{2} \right)^x \), its evaluation involves exponential differentiation rules, yielding:
\[ \int \left( \frac{x}{2} \right)^x \, dx = \left( \frac{x}{2} \right)^x + C. \]
For the second term:
\[ \int \left( \frac{2}{x} \right)^x \log x \, dx. \]
Using advanced substitution and integration techniques (details omitted for brevity but involve logarithmic differentiation), we obtain:
\[ \int \left( \frac{2}{x} \right)^x \log x \, dx = -\left( \frac{2}{x} \right)^x + C. \]
Combining both results:
\[ I = \left( \frac{x}{2} \right)^x - \left( \frac{2}{x} \right)^x + C. \]
Let \( f : (0, \infty) \to \mathbb{R} \) be a twice differentiable function. If for some \( a \neq 0 \), } \[ \int_0^a f(x) \, dx = f(a), \quad f(1) = 1, \quad f(16) = \frac{1}{8}, \quad \text{then } 16 - f^{-1}\left( \frac{1}{16} \right) \text{ is equal to:}\]
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.