To solve the integral, use the trigonometric identity for \( \sin^2(x) \): \[ \sin^2(x) = \frac{1 - \cos(2x)}{2}. \] Now, the integral becomes: \[ \int_0^\pi \sin^2(x) \, dx = \int_0^\pi \frac{1 - \cos(2x)}{2} \, dx. \] This simplifies to: \[ \frac{1}{2} \left[ \int_0^\pi 1 \, dx - \int_0^\pi \cos(2x) \, dx \right]. \] The first integral is straightforward: \[ \int_0^\pi 1 \, dx = \pi. \] The second integral is: \[ \int_0^\pi \cos(2x) \, dx = 0 \quad \text{(since \( \cos(2x) \) is symmetric about \( \pi/2 \))}. \] Thus, the value of the integral is: \[ \frac{1}{2} \times \pi = \frac{\pi}{2}. \] The correct answer is: \[ \boxed{\frac{\pi}{2}}. \]