(A) \(\frac{ 1}{1+ \cot^{3}x} + C\)
(B) \(\frac{ -1}{1+ \cot^{3}x} + C\)
(C) \(\frac{ 1}{ 3\big(1+ \cot^{3}x\big) } + C\)
(D) \(\frac{ -1}{ 3\big(1+ \cot^{3}x\big) } + C\)
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: