(A) \(\frac{ 1}{1+ \cot^{3}x} + C\)
(B) \(\frac{ -1}{1+ \cot^{3}x} + C\)
(C) \(\frac{ 1}{ 3\big(1+ \cot^{3}x\big) } + C\)
(D) \(\frac{ -1}{ 3\big(1+ \cot^{3}x\big) } + C\)
Let \( f : (0, \infty) \to \mathbb{R} \) be a twice differentiable function. If for some \( a \neq 0 \), } \[ \int_0^a f(x) \, dx = f(a), \quad f(1) = 1, \quad f(16) = \frac{1}{8}, \quad \text{then } 16 - f^{-1}\left( \frac{1}{16} \right) \text{ is equal to:}\]