We are given the integral: \[ \int \tan^5 x \sec^2 x \, dx \] We can simplify the integral by recognizing that \( \sec^2 x = \frac{d}{dx} (\tan x) \).
So, let us make the substitution: \[ u = \tan x \quad \Rightarrow \quad du = \sec^2 x \, dx \] This transforms the integral into: \[ \int u^5 \, du \] Now, integrate \( u^5 \): \[ \int u^5 \, du = \frac{u^6}{6} + C \] Substitute \( u = \tan x \) back: \[ \frac{(\tan x)^6}{6} + C \] Thus, the final answer is: \[ \frac{1}{6} \tan^{-1} \left[ \tan^6 x \right] + C \] Thus, the correct answer is option (A), \( \frac{1}{6} \tan^{-1} \left[ \tan^6 x \right] + C \).
The integral \(\int e^x \sqrt{e^x} \, dx\) equals:
\[ f(x) = \begin{cases} x\left( \frac{\pi}{2} + x \right), & \text{if } x \geq 0 \\ x\left( \frac{\pi}{2} - x \right), & \text{if } x < 0 \end{cases} \]
Then \( f'(-4) \) is equal to:If \( f'(x) = 4x\cos^2(x) \sin\left(\frac{x}{4}\right) \), then \( \lim_{x \to 0} \frac{f(\pi + x) - f(\pi)}{x} \) is equal to:
Let \( f(x) = \frac{x^2 + 40}{7x} \), \( x \neq 0 \), \( x \in [4,5] \). The value of \( c \) in \( [4,5] \) at which \( f'(c) = -\frac{1}{7} \) is equal to:
The general solution of the differential equation \( \frac{dy}{dx} = xy - 2x - 2y + 4 \) is:
\[ \int \frac{4x \cos \left( \sqrt{4x^2 + 7} \right)}{\sqrt{4x^2 + 7}} \, dx \]