We are given the integral: \[ \int \tan^5 x \sec^2 x \, dx \] We can simplify the integral by recognizing that \( \sec^2 x = \frac{d}{dx} (\tan x) \).
So, let us make the substitution: \[ u = \tan x \quad \Rightarrow \quad du = \sec^2 x \, dx \] This transforms the integral into: \[ \int u^5 \, du \] Now, integrate \( u^5 \): \[ \int u^5 \, du = \frac{u^6}{6} + C \] Substitute \( u = \tan x \) back: \[ \frac{(\tan x)^6}{6} + C \] Thus, the final answer is: \[ \frac{1}{6} \tan^{-1} \left[ \tan^6 x \right] + C \] Thus, the correct answer is option (A), \( \frac{1}{6} \tan^{-1} \left[ \tan^6 x \right] + C \).