We are given the integral: \[ \int \tan^5 x \sec^2 x \, dx \] We can simplify the integral by recognizing that \( \sec^2 x = \frac{d}{dx} (\tan x) \).
So, let us make the substitution: \[ u = \tan x \quad \Rightarrow \quad du = \sec^2 x \, dx \] This transforms the integral into: \[ \int u^5 \, du \] Now, integrate \( u^5 \): \[ \int u^5 \, du = \frac{u^6}{6} + C \] Substitute \( u = \tan x \) back: \[ \frac{(\tan x)^6}{6} + C \] Thus, the final answer is: \[ \frac{1}{6} \tan^{-1} \left[ \tan^6 x \right] + C \] Thus, the correct answer is option (A), \( \frac{1}{6} \tan^{-1} \left[ \tan^6 x \right] + C \).
Let \( f : (0, \infty) \to \mathbb{R} \) be a twice differentiable function. If for some \( a \neq 0 \), } \[ \int_0^a f(x) \, dx = f(a), \quad f(1) = 1, \quad f(16) = \frac{1}{8}, \quad \text{then } 16 - f^{-1}\left( \frac{1}{16} \right) \text{ is equal to:}\]