We are given the integral:
\[
\int \frac{dx}{x^2 \left( x^4 + 1 \right)^{3/4}}
\]
To solve it, we make a substitution. Let \( 1 + \frac{1}{x^4} = t \), so that we can simplify the integral. Then,
\[
-4x^5 \, dx = dt \quad \text{or} \quad x^5 \, dx = -\frac{dt}{4}
\]
Now, substitute into the integral:
\[
\int \frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} \, dx
\]
Simplifies to:
\[
- \frac{1}{4} \int \frac{dt}{x^5} \, \left( x^4 + 1 \right)^{3/4}
\]
We can now solve the integral and find:
\[
- \frac{(x^4 + 1)^{1/4}}{x^4} + c
\]
Thus, the correct answer is \( - \frac{(x^4 + 1)^{1/4}}{x^4} + c \).