The integral
\(\frac{24}{\pi} \int_{0}^{\sqrt{2}} \frac{2 - x^2}{(2 + x^2) \sqrt{4 + x^4}} \, dx\)
is equal to _______.
The correct answer is 3
\(I = \frac{24}{\pi} \int_{0}^{\sqrt2} \frac{2 - x^2}{(2 + x^2) \sqrt{4 + x^4}} \, dx\)
Let
\(x = \sqrt2t ⇒ dx = \sqrt2dt\)
\(I = \frac{24}{\pi} \int_{0}^{1} \frac{(2 - 2t^2) \sqrt{2}}{(2 + 2t^2) \sqrt{4 + 4t^4}} \, dt\)
\(= \frac{12\sqrt{2}}{\pi} \int_{0}^{1} \frac{\left(\frac{1}{t^2} - 1\right)dt}{\left(t + \frac{1}{t}\right) \sqrt{\left(t + \frac{1}{t}\right)^2 - 2}} \, \)
Let
\(t + \frac{1}{t} = u \)
\(⇒ ( 1 - \frac{1}{t²} ) dt = du\)
\(I = \frac{12\sqrt{2}}{\pi} \int_{2}^{\infty} \frac{-du}{u \sqrt{4^2 - 2}} \, du\)
\(I = \frac{12\sqrt{2}}{\pi} \int_{2}^{\infty} \frac{du}{u^2 \sqrt{-(\frac{\sqrt{2}}u)^2}}\)
\(I = \frac{12\sqrt{2}}{\pi} \int_{\frac{1}{\sqrt{2}}}^{0} \frac{-\frac{1}{\sqrt{2}}dp}{\sqrt{1 - p^2}}\)
\(I = \frac{12}{\pi} \left[ \sin^{-1}(p) \right]_{0}^{\frac{1}{\sqrt{2}}}\)
\(= \frac{12}{π} . \frac{π}{4}\)
= 3
Let \( f : (0, \infty) \to \mathbb{R} \) be a twice differentiable function. If for some \( a \neq 0 \), } \[ \int_0^a f(x) \, dx = f(a), \quad f(1) = 1, \quad f(16) = \frac{1}{8}, \quad \text{then } 16 - f^{-1}\left( \frac{1}{16} \right) \text{ is equal to:}\]
If the domain of the function \( f(x) = \frac{1}{\sqrt{3x + 10 - x^2}} + \frac{1}{\sqrt{x + |x|}} \) is \( (a, b) \), then \( (1 + a)^2 + b^2 \) is equal to:
The representation of the area of a region under a curve is called to be as integral. The actual value of an integral can be acquired (approximately) by drawing rectangles.
Also, F(x) is known to be a Newton-Leibnitz integral or antiderivative or primitive of a function f(x) on an interval I.
F'(x) = f(x)
For every value of x = I.
Integral calculus helps to resolve two major types of problems: