The Integral
\(\int \frac{(1 - \frac{1}{\sqrt{3}})(\cos x - \sin x)}{1 + \frac{2}{\sqrt{3}}\sin2 x} \,dx\)
is equal to
\(\frac{1}{2} \log_e \left| \frac{\tan\left(\frac{\pi}{2} + \frac{\pi}{12}\right)}{\tan\left(\frac{\pi}{2} + \frac{\pi}{6}\right)} \right| + C\)
\(\frac{1}{2} \log_e \left| \frac{\tan\left(\frac{\pi}{2} + \frac{\pi}{6}\right)}{\tan\left(\frac{\pi}{2} + \frac{\pi}{3}\right)} \right| + C\)
\(\log_e \left| \frac{\tan\left(\frac{\pi}{2} + \frac{\pi}{6}\right)}{\tan\left(\frac{\pi}{2} + \frac{\pi}{12}\right)} \right| + C\)
\(\frac{1}{2} \log_e \left| \frac{\tan\left(\frac{\pi}{2} - \frac{\pi}{12}\right)}{\tan\left(\frac{\pi}{2} - \frac{\pi}{6}\right)} \right| + C\)
The correct answer is (A) : \(\frac{1}{2} \log_e \left| \frac{\tan\left(\frac{\pi}{2} + \frac{\pi}{12}\right)}{\tan\left(\frac{\pi}{2} + \frac{\pi}{6}\right)} \right| + C\)
\(=\int \frac{(1 - \frac{1}{\sqrt{3}})(\cos x - \sin x)}{1 + \frac{2}{\sqrt{3}}\sin2 x} \,dx\)
\(= ∫\frac{(\frac{\sqrt{3}-1}{\sqrt{3}}) \sqrt2\sin(\frac{π}{4}-x)}{(\frac{2}{\sqrt3})(\sin \frac{π}{3}+\sin 2x)}dx\)
\(= ∫ \frac{\frac{(\sqrt{3}-1)}{\sqrt2}\sin(\frac{π}{4}-x)}{\sin(\frac{π}{3}+\sin2x)}dx\)
\(=\int \frac{\frac{\sqrt{3}-1}{2\sqrt{2}}\sin(\frac{\pi}{4}-x)}{\sin(\frac{\pi}{6}+x)\cos(\frac{\pi}{6}-x)} \,dx\)
\(= \frac{1}{2} ∫ \frac{2\sin\frac{π}{12}sin(\frac{π}{4}-x) }{\sin(\frac{π}{6}+x)\cos(\frac{π}{6}-x)}dx\)
\(= \frac{1}{2} ∫ \frac{\cos(\frac{π}{6}-x)-\cos(\frac{π}{3}-x)}{\sin(\frac{π}{6}+x)\cos(\frac{π}{6}-x)}dx\)
\(=\frac{1}{2} [ ∫\cosec (\frac{π}{6}+x)dx - ∫sec (\frac{π}{6}-x)dx]\)
\(=\frac{1}{2}[In |\tan(\frac{π}{12}+\frac{x}{2})|- ∫\cosec (\frac{π}{3}-x)dx]\)
\(=\frac{1}{2} [ In|\tan(\frac{π}{12}+ \frac{π}{2})| -In| \frac{π}{6}+\frac{π}{2}|] +C\)
\(=\frac{1}{2} In|\frac{\tan(\frac{π}{12}+ \frac{π}{2})}{\tan(\frac{π}{6}+ \frac{π}{2})}| +C\)
The value \( 9 \int_{0}^{9} \left\lfloor \frac{10x}{x+1} \right\rfloor \, dx \), where \( \left\lfloor t \right\rfloor \) denotes the greatest integer less than or equal to \( t \), is ________.
If the value of the integral
\[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( \frac{x^2 \cos x}{1 + \pi^x} + \frac{1 + \sin^2 x}{1 + e^{\sin^x 2023}} \right) dx = \frac{\pi}{4} (\pi + a) - 2, \]
then the value of \(a\) is:
Nature of compounds TeO₂ and TeH₂ is___________ and ______________respectively.
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
The magnitude of heat exchanged by a system for the given cyclic process ABC (as shown in the figure) is (in SI units):

Definite integral is an operation on functions which approximates the sum of the values (of the function) weighted by the length (or measure) of the intervals for which the function takes that value.
Definite integrals - Important Formulae Handbook
A real valued function being evaluated (integrated) over the closed interval [a, b] is written as :
\(\int_{a}^{b}f(x)dx\)
Definite integrals have a lot of applications. Its main application is that it is used to find out the area under the curve of a function, as shown below:
