The number of houses was
\(1, 2, 3 ...... 49\)
It can be observed that the number of houses are in an A.P. having a as 1 and d also as 1.
Let us assume that the number of xth house was like this.
We know that,
Sum of n terms in an A.P. =\(\frac n2 [2𝑎+(𝑛−1)𝑑]\)
Sum of number of houses preceding xth house = \(S_x − 1\)
= \(\frac {(x-1)}{2}[2a+(x-1-1)d]\)
= \(\frac {x-1}{2}[2(1)+(x-2)1]\)
= \(\frac {x-1}{2}[2+x-2]\)
= \(\frac 12 x(x-1)\)
Sum of number of houses following xth house =\( S_{49} − S_{x}\)
= \(\frac {49}{2}[2(1)+(49-1)1] - \frac x2[2(1)+(x-1)1]\)
= \(\frac {49}{2}(2+49-1) -\frac x2(2+x-1)\)
= \(\frac {49}{2} \times 50 - \frac 12x(x+1)\)
It is given that these sums are equal to each other.
\(\frac {x(x-1)}{2}= 25 \times 49 - \frac 12x(x+1)\)
\(\frac {x^2}{2} - \frac x2 = 1225 - \frac {x^2}{2}-\frac x2\)
\(x^2 = 1225\)
\(x = ± 35\)
However, the house numbers are positive integers.
The value of x will be \(35\) only.
Therefore, house number \(35\) is such that the sum of the numbers of houses preceding the house numbered \(35\) is equal to the sum of the numbers of the houses following it.
"जितेंद्र नार्गे जैसे गाइड के साथ किसी भी पर्यटन स्थल का भ्रमण अधिक आनंददायक और यादगार हो सकता है।" इस कथन के समर्थन में 'साना साना हाथ जोड़ि .......' पाठ के आधार पर तर्कसंगत उत्तर दीजिए।
आप अदिति / आदित्य हैं। आपकी दादीजी को खेलों में अत्यधिक रुचि है। ओलंपिक खेल-2024 में भारत के प्रदर्शन के बारे में जानकारी देते हुए लगभग 100 शब्दों में पत्र लिखिए।
There is a circular park of diameter 65 m as shown in the following figure, where AB is a diameter. An entry gate is to be constructed at a point P on the boundary of the park such that distance of P from A is 35 m more than the distance of P from B. Find distance of point P from A and B respectively.