\[ \lim_{n \to \infty} \sum_{r=1}^{n-1} (r^2 - r)(n - r) \]
\[ = \lim_{n \to \infty} \left( \sum_{r=1}^n r^3 - \sum_{r=1}^n r^2 \right) \]
\[ = \lim_{n \to \infty} \sum_{r=1}^{n-1} \left( -r^3 + r^2(n + 1) - nr \right) \]
\[ \lim_{n \to \infty} \left( \frac{n(n + 1)^2}{2} - \frac{n(n + 1)(2n + 1)}{6} - \frac{n^2(n - 1)}{2} \right) \]
Simplify further:
\[ \lim_{n \to \infty} \left( \frac{(n - 1)n}{2} + \frac{(n + 1)(n - 1)n(2n - 1) - n^2(n - 1)}{6} \right) \]
\[ \lim_{n \to \infty} \left[ \frac{n(n + 1)}{2} + \frac{n(n + 1)}{2} + \frac{2n + 1}{3} \right] \]
\[ \lim_{n \to \infty} \frac{n(n - 1)}{2} \left( -n(n - 1) + (n + 1)(2n - 1) \right) \]
\[ = \lim_{n \to \infty} \frac{n(n + 1)(3n^2 + 3n - 4n - 2)}{6} \]
\[ = \lim_{n \to \infty} \frac{(n - 1)(-3n^2 + 3 + 2(2n^2 + n - 1) - 6)}{(n + 1)(3n^2 - n - 2)} \]
\[ = \lim_{n \to \infty} \frac{(n - 1)(n^2 + 5n - 8)}{(n + 1)(3n^2 - n - 2)} = \frac{1}{3} \]
Let \( y = f(x) \) be the solution of the differential equation
\[ \frac{dy}{dx} + 3y \tan^2 x + 3y = \sec^2 x \]
such that \( f(0) = \frac{e^3}{3} + 1 \), then \( f\left( \frac{\pi}{4} \right) \) is equal to:
Find the IUPAC name of the compound.
If \( \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p \), then \( 96 \ln p \) is: 32