The given problem requires evaluating the limit as \( n \to \infty \) of the expression:
\[\lim_{n \to \infty} \frac{(1^2 - 1)(n-1) + (2^2 - 2)(n-2) + \ldots + ((n-1)^2 - (n-1))}{(1^3 + 2^3 + \ldots + n^3) - (1^2 + 2^2 + \ldots + n^2)}\]This requires simplifying both the numerator and the denominator separately before taking the limit as \( n \to \infty \).
Numerator:
\[\frac{n^3}{3}\]Denominator:
\[\frac{n^4}{4}\]as \( n \to \infty \)
Hence, the correct answer is:
\[\frac{1}{3}\].
\[ \lim_{n \to \infty} \sum_{r=1}^{n-1} (r^2 - r)(n - r) \]
\[ = \lim_{n \to \infty} \left( \sum_{r=1}^n r^3 - \sum_{r=1}^n r^2 \right) \]
\[ = \lim_{n \to \infty} \sum_{r=1}^{n-1} \left( -r^3 + r^2(n + 1) - nr \right) \]
\[ \lim_{n \to \infty} \left( \frac{n(n + 1)^2}{2} - \frac{n(n + 1)(2n + 1)}{6} - \frac{n^2(n - 1)}{2} \right) \]
Simplify further:
\[ \lim_{n \to \infty} \left( \frac{(n - 1)n}{2} + \frac{(n + 1)(n - 1)n(2n - 1) - n^2(n - 1)}{6} \right) \]
\[ \lim_{n \to \infty} \left[ \frac{n(n + 1)}{2} + \frac{n(n + 1)}{2} + \frac{2n + 1}{3} \right] \]
\[ \lim_{n \to \infty} \frac{n(n - 1)}{2} \left( -n(n - 1) + (n + 1)(2n - 1) \right) \]
\[ = \lim_{n \to \infty} \frac{n(n + 1)(3n^2 + 3n - 4n - 2)}{6} \]
\[ = \lim_{n \to \infty} \frac{(n - 1)(-3n^2 + 3 + 2(2n^2 + n - 1) - 6)}{(n + 1)(3n^2 - n - 2)} \]
\[ = \lim_{n \to \infty} \frac{(n - 1)(n^2 + 5n - 8)}{(n + 1)(3n^2 - n - 2)} = \frac{1}{3} \]
A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field \( B \) exists into the page. The bar starts to move from the vertex at time \( t = 0 \) with a constant velocity. If the induced EMF is \( E \propto t^n \), then the value of \( n \) is _____. 