Question:

$$ \lim_{n \to \infty} \frac{(1^2 - 1)(n-1) + (2^2 - 2)(n-2) + \ldots + ((n-1)^2 - (n-1))}{(1^3 + 2^3 + \ldots + n^3) - (1^2 + 2^2 + \ldots + n^2)} $$ is equal to: 

Updated On: Nov 3, 2025
  • $\frac{2}{3}$
  • $\frac{1}{3}$
  • $\frac{3}{4}$
  • $\frac{1}{2}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Approach Solution - 1

The given problem requires evaluating the limit as \( n \to \infty \) of the expression:

\[\lim_{n \to \infty} \frac{(1^2 - 1)(n-1) + (2^2 - 2)(n-2) + \ldots + ((n-1)^2 - (n-1))}{(1^3 + 2^3 + \ldots + n^3) - (1^2 + 2^2 + \ldots + n^2)}\]

This requires simplifying both the numerator and the denominator separately before taking the limit as \( n \to \infty \).

  1. Consider the numerator: 
\[\sum_{k=1}^{n-1} \left( k^2 - k \right)(n-k)\]
  • Expand it: 
\[\sum_{k=1}^{n-1} (k^2 - k)(n-k) = \sum_{k=1}^{n-1} (k^2n - k^3 - kn + k^2)\]
  • This is a polynomial expression, and for the limit as \( n \to \infty \), we focus on the leading terms: 
\[(n/3)(n^3) \approx \frac{n^3}{3}\]
  1. Consider now the denominator: 
\[(1^3 + 2^3 + \ldots + n^3) - (1^2 + 2^2 + \ldots + n^2)\]
  • Simplify using known formulas:
    • Cubes Sum: 
\[\sum_{k=1}^{n} k^3 = \left( \frac{n(n + 1)}{2} \right)^2\]
  • Squares Sum: 
\[\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}\]
  • Leading term of the denominator focusing on 
\[\left( \frac{n(n + 1)}{2} \right)^2 \approx \frac{n^4}{4}\]
  1. For limits, compare the leading terms from numerator and denominator:

Numerator: 

\[\frac{n^3}{3}\]

Denominator: 

\[\frac{n^4}{4}\]
  1. Now, calculate the limit:
\[\lim_{n \to \infty} \frac{\frac{n^3}{3}}{\frac{n^4}{4}} = \lim_{n \to \infty} \frac{4n^3}{3n^4} = \frac{4}{3n} \to \frac{1}{3}\]

 as \( n \to \infty \)

Hence, the correct answer is: 

\[\frac{1}{3}\]

.

Was this answer helpful?
0
0
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

\[ \lim_{n \to \infty} \sum_{r=1}^{n-1} (r^2 - r)(n - r) \]

\[ = \lim_{n \to \infty} \left( \sum_{r=1}^n r^3 - \sum_{r=1}^n r^2 \right) \]

\[ = \lim_{n \to \infty} \sum_{r=1}^{n-1} \left( -r^3 + r^2(n + 1) - nr \right) \]

\[ \lim_{n \to \infty} \left( \frac{n(n + 1)^2}{2} - \frac{n(n + 1)(2n + 1)}{6} - \frac{n^2(n - 1)}{2} \right) \]

Simplify further:

\[ \lim_{n \to \infty} \left( \frac{(n - 1)n}{2} + \frac{(n + 1)(n - 1)n(2n - 1) - n^2(n - 1)}{6} \right) \]

\[ \lim_{n \to \infty} \left[ \frac{n(n + 1)}{2} + \frac{n(n + 1)}{2} + \frac{2n + 1}{3} \right] \]

\[ \lim_{n \to \infty} \frac{n(n - 1)}{2} \left( -n(n - 1) + (n + 1)(2n - 1) \right) \]

\[ = \lim_{n \to \infty} \frac{n(n + 1)(3n^2 + 3n - 4n - 2)}{6} \]

\[ = \lim_{n \to \infty} \frac{(n - 1)(-3n^2 + 3 + 2(2n^2 + n - 1) - 6)}{(n + 1)(3n^2 - n - 2)} \]

\[ = \lim_{n \to \infty} \frac{(n - 1)(n^2 + 5n - 8)}{(n + 1)(3n^2 - n - 2)} = \frac{1}{3} \]

Was this answer helpful?
0
0

Questions Asked in JEE Main exam

View More Questions