We know that
\(g' = \frac {GM}{(R+h)^2}\)
Given \(h = 2R\)
\(g' = \frac {GM}{(R+2R)^2}\)
\(g' = \frac {GM}{(3R)^2}\)
\(g' = \frac {GM}{9R^2}\)
\(g' = \frac {g}{9}\)
so, the correct option is (D): \(\frac g9\)
Net gravitational force at the center of a square is found to be \( F_1 \) when four particles having masses \( M, 2M, 3M \) and \( 4M \) are placed at the four corners of the square as shown in figure, and it is \( F_2 \) when the positions of \( 3M \) and \( 4M \) are interchanged. The ratio \( \dfrac{F_1}{F_2} = \dfrac{\alpha}{\sqrt{5}} \). The value of \( \alpha \) is 

In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
In the real world, everything is always in motion. Objects move at a variable or a constant speed. When someone steps on the accelerator or applies brakes on a car, the speed of the car increases or decreases and the direction of the car changes. In physics, these changes in velocity or directional magnitude of a moving object are represented by acceleration.
