Step 1: Understanding the decay process. Radioactive decay follows the equation: \[ N = N_0 \times \left( \frac{1}{2} \right)^n \] Where \( N_0 \) is the initial number of nuclei, \( N \) is the number of nuclei left after \( n \) half-lives, and \( n \) is the number of half-lives elapsed. If \( \frac{7}{8} \) of the substance has disintegrated, then \( \frac{1}{8} \) of the substance remains. This means the number of remaining radioactive nuclei is \( \frac{N_0}{8} \).
Step 2: Finding the number of half-lives. Using the decay equation: \[ \frac{N_0}{2^n} = \frac{N_0}{8} \] Simplifying: \[ 2^n = 8 \] \[ n = 3 \] So, 3 half-lives have elapsed.
Step 3: Calculating the time. Since the half-life is \( T \), the time taken for the disintegration of \( \frac{7}{8} \) of the substance is: \[ \text{Time} = 3 \times T = 3T \]

Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Method used for separation of mixture of products (B and C) obtained in the following reaction is: 