The gravitational potential \( V \) is related to the gravitational field \( E \) by: \[ E = -\frac{dV}{dx} \] We are given that \( E = \frac{K}{x^3} \), and we need to find \( V \).
Integrating \( E \) with respect to \( x \), we get: \[ V = -\int E \, dx = -\int \frac{K}{x^3} \, dx = \frac{K}{2x^2} \] Thus, the gravitational potential at distance \( x \) is \( \frac{K}{2x^2} \).
Final Answer: \( \frac{K}{2x^2} \)
Match the LIST-I with LIST-II
\[ \begin{array}{|l|l|} \hline \text{LIST-I} & \text{LIST-II} \\ \hline \text{A. Gravitational constant} & \text{I. } [LT^{-2}] \\ \hline \text{B. Gravitational potential energy} & \text{II. } [L^2T^{-2}] \\ \hline \text{C. Gravitational potential} & \text{III. } [ML^2T^{-2}] \\ \hline \text{D. Acceleration due to gravity} & \text{IV. } [M^{-1}L^3T^{-2}] \\ \hline \end{array} \]
Choose the correct answer from the options given below:
If the roots of $\sqrt{\frac{1 - y}{y}} + \sqrt{\frac{y}{1 - y}} = \frac{5}{2}$ are $\alpha$ and $\beta$ ($\beta > \alpha$) and the equation $(\alpha + \beta)x^4 - 25\alpha \beta x^2 + (\gamma + \beta - \alpha) = 0$ has real roots, then a possible value of $y$ is: