The total work done by the machine is:
\[
\text{Work done} = P \times t = 25000 \, \text{J/s} \times 240 \, \text{s} = 6 \times 10^6 \, \text{J}
\]
40% of this work is used to increase the temperature of the block:
\[
\text{Heat energy used} = 0.4 \times 6 \times 10^6 \, \text{J} = 2.4 \times 10^6 \, \text{J}
\]
The formula for heat energy is:
\[
Q = m \times c \times \Delta T
\]
Substituting the given values:
\[
2.4 \times 10^6 = 20 \times 10^3 \times 900 \times \Delta T
\]
Solving for \( \Delta T \):
\[
\Delta T = \frac{2.4 \times 10^6}{20 \times 10^3 \times 900} = 133.3^\circ C
\]
Final Answer:
The rise in temperature is:
\[
\boxed{133.3^\circ C}
\]