To solve this problem, we need to understand the relation between the frequencies of closed and open organ pipes.
Therefore, the length of the closed pipe is 15 cm.
Hence, the correct answer is 15 cm.
The relationship for the fundamental frequency of a closed organ pipe (length \( L_1 \)) and the first overtone of an open organ pipe (length \( L_2 \)) is given by:
\[ \frac{\lambda}{4} = L_1 \quad \text{and} \quad 2 \left( \frac{\lambda}{2} \right) = \lambda \]
The velocity of sound is \( v \), thus:
\[ v = f \lambda \]
For the closed pipe:
\[ v = f_1 (4L_1) \]
For the open pipe:
\[ f_2 = \frac{v}{2L_2} \]
Equating the fundamental frequency of the closed pipe to the first overtone of the open pipe:
\[ f_1 = f_2 \] \[ \frac{v}{4L_1} = \frac{v}{2L_2} \] \[ L_2 = 4L_1 \]
Given \( L_2 = 60 \, \text{cm} \):
\[ 60 = 4 \times L_1 \] \[ L_1 = 15 \, \text{cm} \]

Nature of compounds TeO₂ and TeH₂ is___________ and ______________respectively.