Consider the following statements:
A. Surface tension arises due to extra energy of the molecules at the interior as compared to the molecules at the surface of a liquid.
B. As the temperature of liquid rises, the coefficient of viscosity increases.
C. As the temperature of gas increases, the coefficient of viscosity increases.
D. The onset of turbulence is determined by Reynolds number.
E. In a steady flow, two streamlines never intersect.
Choose the correct answer from the options given below:
$\text{The fractional compression } \left( \frac{\Delta V}{V} \right) \text{ of water at the depth of } 2.5 \, \text{km below the sea level is } \_\_\_\_\_\_\_\_\_\_ \%. \text{ Given, the Bulk modulus of water } = 2 \times 10^9 \, \text{N m}^{-2}, \text{ density of water } = 10^3 \, \text{kg m}^{-3}, \text{ acceleration due to gravity } g = 10 \, \text{m s}^{-2}.$
The density of nitric acid solution is 1.5 g mL\(^{-1}\). Its weight percentage is 68. What is the approximate concentration (in mol L\(^{-1}\)) of nitric acid? (N = 14 u; O = 16 u; H = 1 u)
The osmotic pressure of seawater is 1.05 atm. Four experiments were carried out as shown in the table. In which of the following experiments, pure water can be obtained in part-II of the vessel?
Aqueous CuSO4 solution was electrolysed by passing 2 amp of current for 10 min. What is the weight (in g) of copper deposited at cathode? (Cu = 63 u; F = 96500 C mol-1)
For a first-order reaction, the concentration of reactant was reduced from 0.03 mol L\(^{-1}\) to 0.02 mol L\(^{-1}\) in 25 min. What is its rate (in mol L\(^{-1}\) s\(^{-1}\))?
‘X’ is a protecting colloid. The following data is obtained for preventing the coagulation of 10 mL of gold sol to which 1 mL of 10% NaCl is added. What is the gold number of ‘X’?