Let $ E $ be the energy of both the photon and the proton.
Photon:
Let $ \lambda $ be the wavelength of the photon. The energy of the photon is given by:
$$ E = \frac{hc}{\lambda} \Rightarrow \lambda = \frac{hc}{E} $$
Proton:
The de Broglie wavelength of a proton is given by:
$$ \lambda_p = \frac{h}{p} $$
where $ p $ is the momentum of the proton.
The kinetic energy of the proton is:
$$ E = \frac{p^2}{2m_p} \Rightarrow p^2 = 2m_p E \Rightarrow p = \sqrt{2m_p E} $$
Substituting for $ p $, the de Broglie wavelength becomes:
$$ \lambda_p = \frac{h}{\sqrt{2m_p E}} $$
Finding the Ratio $ \frac{\lambda_p}{\lambda} $:
$$ \frac{\lambda_p}{\lambda} = \frac{\frac{h}{\sqrt{2m_p E}}}{\frac{hc}{E}} = \frac{h}{\sqrt{2m_p E}} \times \frac{E}{hc} = \frac{E}{c \sqrt{2m_p E}} = \frac{\sqrt{E}}{c \sqrt{2m_p}} = \frac{1}{c} \sqrt{\frac{E}{2m_p}} $$
Final Answer:
The final answer is $ \frac{1}{c} \sqrt{\frac{E}{2m_p}} $.