Let $ E $ be the energy of both the photon and the proton.
Photon:
Let $ \lambda $ be the wavelength of the photon. The energy of the photon is given by:
$$ E = \frac{hc}{\lambda} \Rightarrow \lambda = \frac{hc}{E} $$
Proton:
The de Broglie wavelength of a proton is given by:
$$ \lambda_p = \frac{h}{p} $$
where $ p $ is the momentum of the proton.
The kinetic energy of the proton is:
$$ E = \frac{p^2}{2m_p} \Rightarrow p^2 = 2m_p E \Rightarrow p = \sqrt{2m_p E} $$
Substituting for $ p $, the de Broglie wavelength becomes:
$$ \lambda_p = \frac{h}{\sqrt{2m_p E}} $$
Finding the Ratio $ \frac{\lambda_p}{\lambda} $:
$$ \frac{\lambda_p}{\lambda} = \frac{\frac{h}{\sqrt{2m_p E}}}{\frac{hc}{E}} = \frac{h}{\sqrt{2m_p E}} \times \frac{E}{hc} = \frac{E}{c \sqrt{2m_p E}} = \frac{\sqrt{E}}{c \sqrt{2m_p}} = \frac{1}{c} \sqrt{\frac{E}{2m_p}} $$
Final Answer:
The final answer is $ \frac{1}{c} \sqrt{\frac{E}{2m_p}} $.
A flexible chain of mass $m$ is hanging as shown. Find tension at the lowest point. 

Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.