Let $ E $ be the energy of both the photon and the proton.
Photon:
Let $ \lambda $ be the wavelength of the photon. The energy of the photon is given by:
$$ E = \frac{hc}{\lambda} \Rightarrow \lambda = \frac{hc}{E} $$
Proton:
The de Broglie wavelength of a proton is given by:
$$ \lambda_p = \frac{h}{p} $$
where $ p $ is the momentum of the proton.
The kinetic energy of the proton is:
$$ E = \frac{p^2}{2m_p} \Rightarrow p^2 = 2m_p E \Rightarrow p = \sqrt{2m_p E} $$
Substituting for $ p $, the de Broglie wavelength becomes:
$$ \lambda_p = \frac{h}{\sqrt{2m_p E}} $$
Finding the Ratio $ \frac{\lambda_p}{\lambda} $:
$$ \frac{\lambda_p}{\lambda} = \frac{\frac{h}{\sqrt{2m_p E}}}{\frac{hc}{E}} = \frac{h}{\sqrt{2m_p E}} \times \frac{E}{hc} = \frac{E}{c \sqrt{2m_p E}} = \frac{\sqrt{E}}{c \sqrt{2m_p}} = \frac{1}{c} \sqrt{\frac{E}{2m_p}} $$
Final Answer:
The final answer is $ \frac{1}{c} \sqrt{\frac{E}{2m_p}} $.
Which of the following statements are true?
A. The same Bernoulli's equation is applicable to all the points in the flow field if the flow is irrotational.
B. The value of "Constant in the Bernoulli's equation" is different for different streamlines if the flow is rotational.
C. When a nozzle is fitted at the end of a long pipeline, the discharge increases.
D. The velocity of flow at the nozzle end is more than that in the case of a pipe without a nozzle, the head in both cases being the same.
Choose the most appropriate answer from the options given below:
Match List - I with List - II.