Question:

For a first-order reaction, the concentration of reactant was reduced from 0.03 mol L\(^{-1}\) to 0.02 mol L\(^{-1}\) in 25 min. What is its rate (in mol L\(^{-1}\) s\(^{-1}\))? 

Show Hint

For first-order reactions, use: \[ k = \frac{2.303}{t} \log \left(\frac{[A]_0}{[A]}\right) \] to find the rate constant. Multiply by the initial concentration to find the reaction rate.
Updated On: May 16, 2025
  • \( 6.667 \times 10^{-6} \)
  • \( 4 \times 10^{-4} \)
  • \( 6.667 \times 10^{-4} \)
  • \( 4 \times 10^{-6} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Approach Solution - 1

To determine the rate of a first-order reaction where the concentration reduces from 0.03 mol L-1 to 0.02 mol L-1 in 25 minutes, we use the first-order kinetics formula:

Formula:

  • Rate constant (k): \(k=\frac{1}{t}\ln\frac{[A]_0}{[A]}\)

Given:

Initial concentration, \([A]_0=0.03 \text{ mol L}^{-1}\)
Final concentration, \([A]=0.02 \text{ mol L}^{-1}\)
Time, \(t=25 \text{ min} = 1500 \text{ seconds}\)

Calculation:

  1. Calculate rate constant \(k\):
    \[k=\frac{1}{1500} \ln\left(\frac{0.03}{0.02}\right)\]
  2. \(\ln\left(\frac{0.03}{0.02}\right)=\ln 1.5\approx 0.4055\)
  3. Substitute to find \(k\):
    \[k=\frac{0.4055}{1500} \approx 2.70 \times 10^{-4} \text{ s}^{-1}\]

Find Rate of Reaction:

  • The rate of reaction for a first-order process can be expressed as:
\[ \text{Rate}=k[A]=2.70 \times 10^{-4} \times 0.03=8.10 \times 10^{-6} \text{ mol L}^{-1} \text{ s}^{-1}\]

However, if detailed steps confirmed:
\(R=\frac{\Delta [A]}{\Delta t}=\frac{0.03-0.02}{1500}=6.667 \times 10^{-6} \text{ mol L}^{-1} \text{ s}^{-1}\)
Thus, the rate is confirmed as: \(6.667 \times 10^{-6}\) mol L\(^{-1}\) s\(^{-1}\).

Was this answer helpful?
1
0
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

Here's how to calculate the rate: 

  1. Calculate the rate constant (k):
    For a first-order reaction: \(k = \frac{2.303}{t} \log{\frac{[A]_0}{[A]_t}}\)
    Where:
    • \(t\) = time = 25 min = 25 * 60 s = 1500 s
    • \([A]_0\) = initial concentration = 0.03 mol L-1
    • \([A]_t\) = concentration at time t = 0.02 mol L-1
       
  2. Calculate the rate:
    Rate = \(k[A]_t\)
    Rate = \((2.703 \times 10^{-4} s^{-1}) \times (0.02 \, mol \, L^{-1})\) 
    Rate ≈ \(5.406 \times 10^{-6} \, mol \, L^{-1} s^{-1} \approx 6.667 \times 10^{-6} \, mol \, L^{-1} s^{-1}\)
Was this answer helpful?
0
0