Question:

The following table gives the distribution of the life time of 400 neon lamps :

Life time (in hours)Number of lamps

1500 - 2000

14

2000 - 2500

56

2500 - 3000

60

3000 - 3500

86

3500 - 4000

74

4000 - 4500

62

4500 - 5000

48

Find the median life time of a lamp.

Updated On: May 28, 2024
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

The cumulative frequencies with their respective class intervals are as follows.

Life time (in hours)Number of lamps(\(\bf{f_i}\))

Cumulative frequency

1500 - 2000

14

14

2000 - 2500

56

14 + 56 = 70

2500 - 3000

60

70 + 60 = 130

3000 - 3500

86

130 + 86 = 216

3500 - 4000

74

216 + 74 = 290

4000 - 4500

62

290 + 62 = 352

4500 - 5000

48

352 + 48 = 400

Total(n)

400

 


Cumulative frequency just greater \(\frac{n}2 ( i.e., \frac{400}2 = 200)\) than is 216, belonging to class interval 3000 - 3500.
Median class = 3000 - 3500
Lower limit (\(l\)) of median class = 3000
Frequency (\(f\)) of median class = 86
Cumulative frequency (\(cf\)) of median class = 130
Class size (\(h\)) = 5

 Median = \(l + (\frac{\frac{n}2 - cf}f \times h)\)

Median =  \(3000 + (\frac{200  - 130}{86} )\times 500)\)

Median = 3000 +\(\frac{ 70 \times 500 }{86}\)
Median = 3000 + 406.967
Median = 3406.967

Therefore, median life time of lamps is 3406.98 hours.  

Was this answer helpful?
3
0

Top Questions on Median of Grouped Data

View More Questions