Step (i) involves hydroboration-oxidation of the double bond in \( \text{Ph-CH=CH}_2 \), resulting in the anti-Markovnikov addition of water to form \( \text{Ph-CH}_2\text{-CH}_2\text{-OH} \).
Step (ii) converts the alcohol \( (\text{Ph-CH}_2\text{-CH}_2\text{-OH}) \) to the corresponding alkyl halide \( (\text{Ph-CH}_2\text{-CH}_2\text{-Br}) \) using \( \text{HBr} \).
Step (iii) involves the formation of a Grignard reagent with \( \text{Mg} \), producing \( \text{Ph-CH}_2\text{-CH}_2\text{-MgBr} \).
Step (iv) reacts the Grignard reagent with formaldehyde (\( \text{HCHO} \)) followed by hydrolysis to yield the final primary alcohol, \( \text{Ph-CH}_2\text{-CH}_2\text{-CH}_2\text{-OH} \).
Thus, the final product is:
\(\text{Ph-CH}_2\text{-CH}_2\text{-CH}_2\text{-OH}.\)
The Correct answer is : \(\text{Ph-CH}_2\text{-CH}_2\text{-CH}_2\text{-OH}.\)
The correct increasing order of stability of the complexes based on \( \Delta \) value is:
List I (Molecule) | List II (Number and types of bond/s between two carbon atoms) | ||
A. | ethane | I. | one σ-bond and two π-bonds |
B. | ethene | II. | two π-bonds |
C. | carbon molecule, C2 | III. | one σ-bonds |
D. | ethyne | IV. | one σ-bond and one π-bond |
Match the following List-I with List-II and choose the correct option: List-I (Compounds) | List-II (Shape and Hybridisation) (A) PF\(_{3}\) (I) Tetrahedral and sp\(^3\) (B) SF\(_{6}\) (III) Octahedral and sp\(^3\)d\(^2\) (C) Ni(CO)\(_{4}\) (I) Tetrahedral and sp\(^3\) (D) [PtCl\(_{4}\)]\(^{2-}\) (II) Square planar and dsp\(^2\)
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: