




The reaction sequence involves the following steps:
Thus, the final product A is a simple alkyl chain attached to the benzene ring: Answer: (1).
So, the correct answer is : Option (1).
Match List-I with List-II: List-I
The correct increasing order of stability of the complexes based on \( \Delta \) value is:
| List I (Molecule) | List II (Number and types of bond/s between two carbon atoms) | ||
| A. | ethane | I. | one σ-bond and two π-bonds |
| B. | ethene | II. | two π-bonds |
| C. | carbon molecule, C2 | III. | one σ-bonds |
| D. | ethyne | IV. | one σ-bond and one π-bond |
For $ \alpha, \beta, \gamma \in \mathbb{R} $, if $$ \lim_{x \to 0} \frac{x^2 \sin \alpha x + (\gamma - 1)e^{x^2} - 3}{\sin 2x - \beta x} = 3, $$ then $ \beta + \gamma - \alpha $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: