To find the energy equivalent of 1 gram of a substance, we will use Einstein's mass-energy equivalence principle, given by the famous equation:
\(E = mc^2\)
where:
For 1 gram of a substance:
Substituting these values into the equation:
\(E = (1 \times 10^{-3} \, \text{kg}) \times (3 \times 10^8 \, \text{m/s})^2\)
Calculate the value inside the parentheses:
\((3 \times 10^8 \, \text{m/s})^2 = 9 \times 10^{16} \, \text{m}^2/\text{s}^2\)
Now, multiply them together:
\(E = (1 \times 10^{-3}) \times (9 \times 10^{16})\)
\(E = 9 \times 10^{13} \, \text{joules}\)
To convert joules to electronvolts (eV), use the conversion factor:
\(1 \, \text{joule} = 6.242 \times 10^{18} \, \text{eV}\)
Therefore,
\(E = 9 \times 10^{13} \, \text{joules} \times 6.242 \times 10^{18} \, \text{eV/joule}\)
\(E = 5.6178 \times 10^{32} \, \text{eV}\)
Now, convert electronvolts to mega-electronvolts (MeV):
\(1 \, \text{MeV} = 10^6 \, \text{eV}\)
\(E = \frac{5.6178 \times 10^{32} \, \text{eV}}{10^6}\)
\(E = 5.6178 \times 10^{26} \, \text{MeV}\)
Thus, the energy equivalent of 1 g of substance is \(5.6 \times 10^{26} \, \text{MeV}\), which matches the given correct option.
The energy equivalent of a mass is given by Einstein’s equation:
\( E = mc^2, \)
where:
Step 1: Substitute values into \( E = mc^2 \)
\( E = (10^{-3}) \times (3 \times 10^8)^2 \, \text{J}. \)
Simplify:
\( E = (10^{-3}) \times (9 \times 10^{16}) \, \text{J}. \)
\( E = 9 \times 10^{13} \, \text{J}. \)
Step 2: Convert energy to electron volts (eV)
Using the conversion \( 1 \, \text{J} = 6.241 \times 10^{18} \, \text{eV}: \)
\( E = (9 \times 10^{13}) \times (6.241 \times 10^{18}) \, \text{eV}. \)
\( E = 56.169 \times 10^{31} \, \text{eV}. \)
Convert to MeV (\( 1 \, \text{MeV} = 10^6 \, \text{eV} \)):
\( E = 56.169 \times 10^{25} \, \text{MeV}. \)
Approximate:
\( E \approx 5.6 \times 10^{26} \, \text{MeV}. \)
Final Answer: \( 5.6 \times 10^{26} \, \text{MeV}. \)
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \[ (\sin x \cos y)(f(2x + 2y) - f(2x - 2y)) = (\cos x \sin y)(f(2x + 2y) + f(2x - 2y)), \] for all \( x, y \in \mathbb{R}. \)
If \( f'(0) = \frac{1}{2} \), then the value of \( 24f''\left( \frac{5\pi}{3} \right) \) is: