The electric potential at the surface of an atomic nucleus \( (z = 50) \) of radius \( 9 \times 10^{-13} \) cm is \(\_\_\_\_\_\_\_ \)\(\times 10^{6} V\).
The electric potential at the surface of a nucleus is given by:
\(V = \frac{kQ}{R} = \frac{kZe}{R},\)
where:
- \(k = 9 \times 10^9 \, \text{N·m}^2/\text{C}^2\),
- \(Z = 50\),
- \(e = 1.6 \times 10^{-19} \, \text{C}\),
- \(R = 9 \times 10^{-13} \, \text{cm} = 9 \times 10^{-15} \, \text{m}\).
Substituting the values:
\(V = \frac{9 \times 10^9 \times 50 \times 1.6 \times 10^{-19}}{9 \times 10^{-15}}\)
Simplify:
\(V = 8 \times 10^6 \, \text{V}.\)
The Correct answer is: 8
Let \( y = f(x) \) be the solution of the differential equation
\[ \frac{dy}{dx} + 3y \tan^2 x + 3y = \sec^2 x \]
such that \( f(0) = \frac{e^3}{3} + 1 \), then \( f\left( \frac{\pi}{4} \right) \) is equal to:
Find the IUPAC name of the compound.
If \( \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p \), then \( 96 \ln p \) is: 32