Question:

The electric potential at the surface of an atomic nucleus \( (z = 50) \) of radius \( 9 \times 10^{-13} \) cm is \(\_\_\_\_\_\_\_ \)\(\times 10^{6} V\).

Updated On: Nov 16, 2024
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 8

Solution and Explanation

The electric potential at the surface of a nucleus is given by:

\(V = \frac{kQ}{R} = \frac{kZe}{R},\)

where:
- \(k = 9 \times 10^9 \, \text{N·m}^2/\text{C}^2\),
- \(Z = 50\),
- \(e = 1.6 \times 10^{-19} \, \text{C}\),
- \(R = 9 \times 10^{-13} \, \text{cm} = 9 \times 10^{-15} \, \text{m}\).

Substituting the values:

\(V = \frac{9 \times 10^9 \times 50 \times 1.6 \times 10^{-19}}{9 \times 10^{-15}}\)

Simplify:

\(V = 8 \times 10^6 \, \text{V}.\)
The Correct answer is: 8

Was this answer helpful?
0
0

Questions Asked in JEE Main exam

View More Questions