The distribution below gives the weights of 30 students of a class. Find the median weight of the students.
Weight (in kg) | 40 - 45 | 45 - 50 | 50 - 55 | 65 - 60 | 70- 65 | 65 - 70 | 70 - 75 |
---|---|---|---|---|---|---|---|
Number of students | 2 | 3 | 8 | 6 | 6 | 3 | 2 |
The cumulative frequencies with their respective class intervals are as follows.
Weight (in kg) | Frequency (f\(_i\)) | Cumulative frequency |
---|---|---|
40 - 45 | 2 | 2 |
45 - 50 | 3 | 2 + 3 = 5 |
50 - 55 | 8 | 5 + 8 = 13 |
65 - 60 | 6 | 13 + 6 = 19 |
70- 65 | 6 | 19 + 6 = 15 |
65 - 70 | 3 | 25 + 3 = 28 |
70 - 75 | 2 | 28 + 2 = 30 |
Total (n) | 30 |
|
Cumulative frequency just greater \(\frac{n}2 ( i.e., \frac{30}2 = 15)\) than is 19, belonging to class interval 55−60.
Median class = 55−60
Lower limit (\(l\)) of median class = 55
Frequency (\(f\)) of median class = 6
Cumulative frequency (\(cf\)) of median class = 13
Class size (\(h\)) = 5
Median = \( l + (\frac{\frac{n}2 - cf}f \times h)\)
Median = \(55 + (\frac{15 - 13}6 \times 5)\)
Median = 55 + \( \frac{10}6\)
Median = 56.67
Therefore, median weight is 56.67 kg.
The following data shows the number of family members living in different bungalows of a locality:
Number of Members | 0−2 | 2−4 | 4−6 | 6−8 | 8−10 | Total |
---|---|---|---|---|---|---|
Number of Bungalows | 10 | p | 60 | q | 5 | 120 |
If the median number of members is found to be 5, find the values of p and q.
The population of lions was noted in different regions across the world in the following table:
Number of lions | Number of regions |
---|---|
0–100 | 2 |
100–200 | 5 |
200–300 | 9 |
300–400 | 12 |
400–500 | x |
500–600 | 20 |
600–700 | 15 |
700–800 | 10 |
800–900 | y |
900–1000 | 2 |
Total | 100 |
If the median of the given data is 525, find the values of x and y.
आप अदिति / आदित्य हैं। आपकी दादीजी को खेलों में अत्यधिक रुचि है। ओलंपिक खेल-2024 में भारत के प्रदर्शन के बारे में जानकारी देते हुए लगभग 100 शब्दों में पत्र लिखिए।