Step 1: Write parametric equations of the line.
\[
x = 3 + \lambda,\quad y = 4 + 2\lambda,\quad z = 5 + 2\lambda
\]
Step 2: Substitute in the plane equation.
\[
(3+\lambda) + (4+2\lambda) + (5+2\lambda) = 2
\]
\[
12 + 5\lambda = 2
\Rightarrow \lambda = -2
\]
Step 3: Find the point of intersection.
\[
x=1,\; y=0,\; z=1
\]
Step 4: Find the distance from \( (3,4,5) \).
\[
\text{Distance} = \sqrt{(3-1)^2 + (4-0)^2 + (5-1)^2}
\]
\[
= \sqrt{4+16+16} = \sqrt{36} = 6
\]
Step 5: Conclusion.
\[
\boxed{6 \text{ units}}
\]