The correct answer is (C) : \(2\sqrt2\)
AB = x – 2y + 1 = 0
AC = 2x – y - 1 = 0
So A(1, 1)
Altitude from B is BH \(= x + 2y – 7 = 0 ⇒ B (3, 2) \)
Altitude from C is CH \(= 2x + y – 7 = 0 ⇒ C (2, 3) \)
Centroid of ΔABC = E(2, 2) OE = \(2\sqrt2\)
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is
Let $ S $ denote the locus of the point of intersection of the pair of lines $$ 4x - 3y = 12\alpha,\quad 4\alpha x + 3\alpha y = 12, $$ where $ \alpha $ varies over the set of non-zero real numbers. Let $ T $ be the tangent to $ S $ passing through the points $ (p, 0) $ and $ (0, q) $, $ q > 0 $, and parallel to the line $ 4x - \frac{3}{\sqrt{2}} y = 0 $.
Then the value of $ pq $ is