Let the line $\frac{x}{4} + \frac{y}{2} = 1$ meet the x-axis and y-axis at A and B, respectively. M is the midpoint of side AB, and M' is the image of the point M across the line $x + y = 1$. Let the point P lie on the line $x + y = 1$ such that $\Delta ABP$ is an isosceles triangle with $AP = BP$. Then the distance between M' and P is:
Let \( C_{t-1} = 28, C_t = 56 \) and \( C_{t+1} = 70 \). Let \( A(4 \cos t, 4 \sin t), B(2 \sin t, -2 \cos t) \text{ and } C(3r - n_1, r^2 - n - 1) \) be the vertices of a triangle ABC, where \( t \) is a parameter. If \( (3x - 1)^2 + (3y)^2 = \alpha \) is the locus of the centroid of triangle ABC, then \( \alpha \) equals:
Consider the lines $ x(3\lambda + 1) + y(7\lambda + 2) = 17\lambda + 5 $. If P is the point through which all these lines pass and the distance of L from the point $ Q(3, 6) $ is \( d \), then the distance of L from the point \( (3, 6) \) is \( d \), then the value of \( d^2 \) is
"In order to be a teacher, one must graduate from college. All poets are poor. Some Mathematicians are poets. No college graduate is poor."
Which of the following is true?