Let \( F_1, F_2 \) \(\text{ be the foci of the hyperbola}\) \[ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1, a > 0, \, b > 0, \] and let \( O \) be the origin. Let \( M \) be an arbitrary point on curve \( C \) and above the X-axis and \( H \) be a point on \( MF_1 \) such that \( MF_2 \perp F_1 F_2, \, M F_1 \perp OH, \, |OH| = \lambda |O F_2| \) with \( \lambda \in (2/5, 3/5) \), then the range of the eccentricity \( e \) is in:
Step 1: Understanding the eccentricity of a hyperbola.
The eccentricity \( e \) of a hyperbola is given by:
\[
e = \sqrt{1 + \frac{b^2}{a^2}}
\]
Step 2: The relationship between distances.
We are given the conditions involving the distances from \( M \) and \( O \) to the foci. Using the relationship between the distances and the specific bounds for \( \lambda \), we can derive the bounds for \( e \).
Step 3: Conclusion.
After applying the conditions and solving the range for \( e \), we find that the range of the eccentricity is \( (\sqrt{7/3}, 2) \), corresponding to option (b).
Thus, the correct answer is option (b).
Let $ S $ denote the locus of the point of intersection of the pair of lines $$ 4x - 3y = 12\alpha,\quad 4\alpha x + 3\alpha y = 12, $$ where $ \alpha $ varies over the set of non-zero real numbers. Let $ T $ be the tangent to $ S $ passing through the points $ (p, 0) $ and $ (0, q) $, $ q > 0 $, and parallel to the line $ 4x - \frac{3}{\sqrt{2}} y = 0 $.
Then the value of $ pq $ is
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is
Consider the following statements followed by two conclusions.
Statements: 1. Some men are great. 2. Some men are wise.
Conclusions: 1. Men are either great or wise. 2. Some men are neither great nor wise. Choose the correct option: