Question:

The distance between two stars of masses 3MS and 6MS is 9R. Here R is the mean distance between the centres of the Earth and the Sun, and MS is the mass of the Sun. The two stars orbit around their common centre of mass in circular orbits with period nT, where T is the period of Earth’s revolution around the Sun. The value of n is ___.

Updated On: May 11, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 9

Solution and Explanation

wire

Step 1: Understanding the system
We are given a two-body system where the centre of mass lies at a distance of 6R from the lighter mass. The system is rotating under gravitational interaction.

Step 2: Apply centripetal force balance for heavier mass
Assume the heavier mass is 3Ms and the lighter is Ms.
Distance of 3Ms from centre of mass = R
Distance of Ms from centre of mass = 6R
Using centripetal force formula for heavier mass:
\( 3M_s \omega^2 \cdot 6R = \frac{G \cdot 3M_s \cdot M_s}{(R + 6R)^2} = \frac{3GM_s^2}{49R^2} \)
The correct distance between them is 7R, hence the denominator is (7R)2 = 49R².

Step 3: Cancel mass and simplify
\( \omega^2 = \frac{G M_s}{(49R^2) \cdot (18R)} = \frac{GM_s}{81R^3} \)

Step 4: Use ω to find time period
We know the relation: \( T = \frac{2\pi}{\omega} \Rightarrow T' = 2\pi \sqrt{\frac{1}{\omega^2}} \)
So,
\( T' = \sqrt{\frac{81R^3}{GM_s}} \)

Step 5: Compare with standard time period
If the standard time period is \( T = \sqrt{\frac{R^3}{GM_s}} \)
Then,
\( T' = 9T \) ⇒ n = 9

Final Answer:
The value of n = 9

Was this answer helpful?
0
0

Questions Asked in JEE Advanced exam

View More Questions

Concepts Used:

Gravitation

In mechanics, the universal force of attraction acting between all matter is known as Gravity, also called gravitation, . It is the weakest known force in nature.

Newton’s Law of Gravitation

According to Newton’s law of gravitation, “Every particle in the universe attracts every other particle with a force whose magnitude is,

  • F ∝ (M1M2) . . . . (1)
  • (F ∝ 1/r2) . . . . (2)

On combining equations (1) and (2) we get,

F ∝ M1M2/r2

F = G × [M1M2]/r2 . . . . (7)

Or, f(r) = GM1M2/r2

The dimension formula of G is [M-1L3T-2].