Step 1: Understanding the system
We are given a two-body system where the centre of mass lies at a distance of 6R from the lighter mass. The system is rotating under gravitational interaction.
Step 2: Apply centripetal force balance for heavier mass
Assume the heavier mass is 3Ms and the lighter is Ms.
Distance of 3Ms from centre of mass = R
Distance of Ms from centre of mass = 6R
Using centripetal force formula for heavier mass:
\( 3M_s \omega^2 \cdot 6R = \frac{G \cdot 3M_s \cdot M_s}{(R + 6R)^2} = \frac{3GM_s^2}{49R^2} \)
The correct distance between them is 7R, hence the denominator is (7R)2 = 49R².
Step 3: Cancel mass and simplify
\( \omega^2 = \frac{G M_s}{(49R^2) \cdot (18R)} = \frac{GM_s}{81R^3} \)
Step 4: Use ω to find time period
We know the relation: \( T = \frac{2\pi}{\omega} \Rightarrow T' = 2\pi \sqrt{\frac{1}{\omega^2}} \)
So,
\( T' = \sqrt{\frac{81R^3}{GM_s}} \)
Step 5: Compare with standard time period
If the standard time period is \( T = \sqrt{\frac{R^3}{GM_s}} \)
Then,
\( T' = 9T \) ⇒ n = 9
Final Answer:
The value of n = 9
A small point of mass \(m\) is placed at a distance \(2R\) from the center \(O\) of a big uniform solid sphere of mass \(M\) and radius \(R\). The gravitational force on \(m\) due to \(M\) is \(F_1\). A spherical part of radius \(R/3\) is removed from the big sphere as shown in the figure, and the gravitational force on \(m\) due to the remaining part of \(M\) is found to be \(F_2\). The value of the ratio \( F_1 : F_2 \) is: 
Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R. Assertion A: The kinetic energy needed to project a body of mass $m$ from earth surface to infinity is $\frac{1}{2} \mathrm{mgR}$, where R is the radius of earth. Reason R: The maximum potential energy of a body is zero when it is projected to infinity from earth surface.
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
In mechanics, the universal force of attraction acting between all matter is known as Gravity, also called gravitation, . It is the weakest known force in nature.
According to Newton’s law of gravitation, “Every particle in the universe attracts every other particle with a force whose magnitude is,
On combining equations (1) and (2) we get,
F ∝ M1M2/r2
F = G × [M1M2]/r2 . . . . (7)
Or, f(r) = GM1M2/r2
The dimension formula of G is [M-1L3T-2].