Let the object distance be \(u\), and the image distance be \(v\). Since the magnification \(m = -\frac{v}{u} = 3\), we have:
\[ v = 3u \]
From the lens formula:
\[ \frac{1}{f} = \frac{1}{v} - \frac{1}{u} \]
Substituting \(v = 3u\):
\[ \frac{1}{f} = \frac{1}{3u} - \frac{1}{u} \]
Simplifying:
\[ \frac{1}{f} = \frac{1 - 3}{3u} = -\frac{2}{3u} \]
Now, since \(u = 10 \, \text{cm}\), we get:
\[ f = 15 \, \text{cm} \]
Thus, the correct answer is 15.
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: