Let the object distance be \(u\), and the image distance be \(v\). Since the magnification \(m = -\frac{v}{u} = 3\), we have:
\[ v = 3u \]
From the lens formula:
\[ \frac{1}{f} = \frac{1}{v} - \frac{1}{u} \]
Substituting \(v = 3u\):
\[ \frac{1}{f} = \frac{1}{3u} - \frac{1}{u} \]
Simplifying:
\[ \frac{1}{f} = \frac{1 - 3}{3u} = -\frac{2}{3u} \]
Now, since \(u = 10 \, \text{cm}\), we get:
\[ f = 15 \, \text{cm} \]
Thus, the correct answer is 15.
A transparent block A having refractive index $ \mu_2 = 1.25 $ is surrounded by another medium of refractive index $ \mu_1 = 1.0 $ as shown in figure. A light ray is incident on the flat face of the block with incident angle $ \theta $ as shown in figure. What is the maximum value of $ \theta $ for which light suffers total internal reflection at the top surface of the block ?
Match List-I with List-II: List-I