The direction cosines of a line are given by the formula:
\[
\left( \frac{l}{\sqrt{l^2 + m^2 + n^2}}, \frac{m}{\sqrt{l^2 + m^2 + n^2}}, \frac{n}{\sqrt{l^2 + m^2 + n^2}} \right)
\]
where \( l, m, n \) are the direction ratios of the line.
Given the direction ratios \( 1, 3, 5 \), we first calculate the magnitude of the direction ratios:
\[
\text{Magnitude} = \sqrt{1^2 + 3^2 + 5^2} = \sqrt{1 + 9 + 25} = \sqrt{35}
\]
Now, we calculate the direction cosines:
\[
\text{Direction cosines} = \left( \frac{1}{\sqrt{35}}, \frac{3}{\sqrt{35}}, \frac{5}{\sqrt{35}} \right)
\]
Thus, the correct answer is:
\[
\boxed{\left( \frac{1}{\sqrt{35}}, \frac{3}{\sqrt{35}}, \frac{5}{\sqrt{35}} \right)}
\]