Let the trapezium \(ABCD\) have \(AB \parallel DC\), \(AD \perp AB\), and let
\[
AB = a,\quad DC = c,\quad \text{with } a = 3c.
\]
The radius of the incircle is \(r = 3\) cm.
Step 1: Use the fact that the circle touches both parallel sides.
Since the circle is tangent to both \(AB\) and \(DC\), the perpendicular distance between these two parallel lines is equal to the diameter of the circle:
\[
\text{height} = AD = 2r = 2 \times 3 = 6 \text{ cm}.
\]
Step 2: Set up a coordinate system.
Place the trapezium as follows:
\[
A = (0,0), \quad B = (a,0), \quad D = (0,6), \quad C = (c,6),
\]
with \(a = 3c\).
The circle touches:
- \(AB\) at distance 3 \(\Rightarrow\) center is 3 units above it,
- \(DC\) at distance 3 \(\Rightarrow\) center is 3 units below it,
- \(AD\) at distance 3 \(\Rightarrow\) center is 3 units to the right of it.
Hence, the center of the circle is
\[
O = (3,3).
\]
Step 3: Use the distance from the center to side \(BC\).
Line \(BC\) passes through \(B(a,0)\) and \(C(c,6)\).
The equation of line \(BC\) is:
\[
\text{slope} = \frac{6 - 0}{c - a} = \frac{6}{c - a},
\]
so
\[
y = \frac{6}{c - a}(x - a).
\]
Rewriting in standard form:
\[
(c - a)y = 6x - 6a \quad \Rightarrow \quad 6x - (c - a)y - 6a = 0.
\]
The perpendicular distance from \(O(3,3)\) to line \(BC\) must be equal to the radius \(3\):
\[
\frac{\left|6\cdot 3 - (c - a)\cdot 3 - 6a\right|}{\sqrt{6^2 + (-(c - a))^2}} = 3.
\]
Simplify the numerator:
\[
6\cdot 3 - 3(c - a) - 6a
= 18 - 3c + 3a - 6a
= 18 - 3c - 3a
= 3(6 - c - a).
\]
So,
\[
\frac{3|6 - c - a|}{\sqrt{36 + (c - a)^2}} = 3
\quad \Rightarrow \quad
\frac{|6 - c - a|}{\sqrt{36 + (c - a)^2}} = 1.
\]
Step 4: Use the relation \(a = 3c\).
Since \(a = 3c\),
\[
a + c = 3c + c = 4c, \quad c - a = c - 3c = -2c.
\]
Then
\[
|6 - (a + c)| = |6 - 4c|, \quad
\sqrt{36 + (c - a)^2} = \sqrt{36 + (-2c)^2} = \sqrt{36 + 4c^2}.
\]
From
\[
\frac{|6 - 4c|}{\sqrt{36 + 4c^2}} = 1
\quad \Rightarrow \quad
(6 - 4c)^2 = 36 + 4c^2.
\]
Expanding:
\[
36 - 48c + 16c^2 = 36 + 4c^2
\Rightarrow 16c^2 - 48c = 4c^2
\Rightarrow 12c^2 - 48c = 0
\Rightarrow 12c(c - 4) = 0.
\]
So \(c = 4\) (since \(c>0\)), and hence
\[
a = 3c = 12.
\]
Step 5: Find the area of the trapezium.
The area of a trapezium is
\[
\text{Area} = \frac{1}{2}(AB + DC)\cdot \text{height}
= \frac{1}{2}(a + c)\cdot AD
= \frac{1}{2}(12 + 4)\cdot 6
= \frac{1}{2} \times 16 \times 6
= 48.
\]
So, the area of the trapezium is \(48\ \text{sq. cm}\).