Step 1: Let the side length of the regular hexagon be \(s\). The area of a regular hexagon is given by \[ \text{Area}_{\text{hex}} = \frac{3\sqrt{3}}{2}s^2. \] Step 2: Fix a coordinate system. Place the hexagon such that \[ B = (0,0), \quad C = (s,0). \] In a regular hexagon, consecutive sides subtend an angle of \(60^\circ\). Hence, the adjacent vertices can be taken as \[ A = \left(-\frac{s}{2}, \frac{\sqrt{3}s}{2}\right), \quad D = \left(\frac{3s}{2}, \frac{\sqrt{3}s}{2}\right). \] Step 3: Determine the midpoints \(P\) and \(Q\). The midpoint of \(AB\) is \[ P = \left(\frac{-\frac{s}{2} + 0}{2}, \frac{\frac{\sqrt{3}s}{2} + 0}{2}\right) = \left(-\frac{s}{4}, \frac{\sqrt{3}s}{4}\right). \] The midpoint of \(CD\) is \[ Q = \left(\frac{s + \frac{3s}{2}}{2}, \frac{0 + \frac{\sqrt{3}s}{2}}{2}\right) = \left(\frac{5s}{4}, \frac{\sqrt{3}s}{4}\right). \] Step 4: Find the area of trapezium \(PBCQ\). Points \(P\) and \(Q\) have the same \(y\)-coordinate, so \(PQ\) is parallel to \(BC\). The height of the trapezium is \[ h = \frac{\sqrt{3}s}{4}. \] The lengths of the parallel sides are \[ BC = s, \qquad PQ = \frac{5s}{4} - \left(-\frac{s}{4}\right) = \frac{3s}{2}. \] Hence, the area of the trapezium is \[ \text{Area}_{\text{trap}} = \frac{1}{2}(BC + PQ)\cdot h = \frac{1}{2}\left(s + \frac{3s}{2}\right)\cdot \frac{\sqrt{3}s}{4} = \frac{5\sqrt{3}}{16}s^2. \] Step 5: Compute the ratio of the areas. \[ \frac{\text{Area}_{\text{trap}}}{\text{Area}_{\text{hex}}} = \frac{\frac{5\sqrt{3}}{16}s^2}{\frac{3\sqrt{3}}{2}s^2} = \frac{5}{16}\cdot\frac{2}{3} = \frac{5}{24}. \] Therefore, the ratio of the area of trapezium \(PBCQ\) to the area of the hexagon is \[ 5 : 24. \]
In \(\triangle ABC\), \(DE \parallel BC\). If \(AE = (2x+1)\) cm, \(EC = 4\) cm, \(AD = (x+1)\) cm and \(DB = 3\) cm, then the value of \(x\) is


In the adjoining figure, TS is a tangent to a circle with centre O. The value of $2x^\circ$ is
For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: