Step 1: Identifying Order The order of a differential equation is the highest derivative present. In the given equation, the highest order derivative is \( \frac{d^4y}{dx^4} \), so the order is \( 4 \).
Step 2: Identifying Degree The degree of a differential equation is the power of the highest-order derivative after making the equation polynomial in derivatives. Since the equation contains negative and fractional powers of derivatives, we first remove these. \[ \left(\frac{d^2y}{dx^2} \right)^{-7/2}, \quad \left(\frac{d^2y}{dx^2} \right)^{-5/2} \] These are non-polynomial terms, so we rewrite them appropriately and determine that the degree of the equation is \( 2 \).
Step 3: Compute the Difference \[ \text{Difference} = \text{Order} - \text{Degree} = 4 - 2 = 2 \]
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
An inductor and a resistor are connected in series to an AC source of voltage \( 144\sin(100\pi t + \frac{\pi}{2}) \) volts. If the current in the circuit is \( 6\sin(100\pi t + \frac{\pi}{2}) \) amperes, then the resistance of the resistor is: