Given:
\[ 9 \text{ MSD} = 10 \text{ VSD}. \]
The least count (LC) is:
\[ \text{LC} = 1 \text{ MSD} - 1 \text{ VSD}. \]
\[ \text{LC} = 1 \text{ MSD} - \frac{9}{10} \text{ MSD} = \frac{1}{10} \text{ MSD}. \]
\[ \text{LC} = 0.01 \, \text{cm}. \]
Reading of the diameter:
\[ \text{Diameter} = \text{MSR} + \text{LC} \times \text{VSR}. \]
\[ \text{Diameter} = 2 \, \text{cm} + (0.01) \times (2) = 2.02 \, \text{cm}. \]
The volume of the sphere is:
\[ V = \frac{4}{3} \pi \left( \frac{d}{2} \right)^3 = \frac{4}{3} \pi \left( \frac{2.02}{2} \right)^3. \]
\[ V = \frac{4}{3} \pi (1.01)^3 = 4.32 \, \text{cm}^3. \]
The density is:
\[ \text{Density} = \frac{\text{Mass}}{\text{Volume}} = \frac{8.635}{4.32}. \]
\[ \text{Density} \approx 1.998 \, \text{g/cm}^3 \approx 2.00 \, \text{g/cm}^3. \]
Final Answer: 2.0 g/cm3.
Figure 1 shows the configuration of main scale and Vernier scale before measurement. Fig. 2 shows the configuration corresponding to the measurement of diameter $ D $ of a tube. The measured value of $ D $ is:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: