Given:
\[ 9 \text{ MSD} = 10 \text{ VSD}. \]
The least count (LC) is:
\[ \text{LC} = 1 \text{ MSD} - 1 \text{ VSD}. \]
\[ \text{LC} = 1 \text{ MSD} - \frac{9}{10} \text{ MSD} = \frac{1}{10} \text{ MSD}. \]
\[ \text{LC} = 0.01 \, \text{cm}. \]
Reading of the diameter:
\[ \text{Diameter} = \text{MSR} + \text{LC} \times \text{VSR}. \]
\[ \text{Diameter} = 2 \, \text{cm} + (0.01) \times (2) = 2.02 \, \text{cm}. \]
The volume of the sphere is:
\[ V = \frac{4}{3} \pi \left( \frac{d}{2} \right)^3 = \frac{4}{3} \pi \left( \frac{2.02}{2} \right)^3. \]
\[ V = \frac{4}{3} \pi (1.01)^3 = 4.32 \, \text{cm}^3. \]
The density is:
\[ \text{Density} = \frac{\text{Mass}}{\text{Volume}} = \frac{8.635}{4.32}. \]
\[ \text{Density} \approx 1.998 \, \text{g/cm}^3 \approx 2.00 \, \text{g/cm}^3. \]
Final Answer: 2.0 g/cm3.
The ratio of the power of a light source \( S_1 \) to that of the light source \( S_2 \) is 2. \( S_1 \) is emitting \( 2 \times 10^{15} \) photons per second at 600 nm. If the wavelength of the source \( S_2 \) is 300 nm, then the number of photons per second emitted by \( S_2 \) is ________________ \( \times 10^{14} \).
Match the LIST-I with LIST-II
LIST-I | LIST-II | ||
---|---|---|---|
A. | Boltzmann constant | I. | \( \text{ML}^2\text{T}^{-1} \) |
B. | Coefficient of viscosity | II. | \( \text{MLT}^{-3}\text{K}^{-1} \) |
C. | Planck's constant | III. | \( \text{ML}^2\text{T}^{-2}\text{K}^{-1} \) |
D. | Thermal conductivity | IV. | \( \text{ML}^{-1}\text{T}^{-1} \) |
Choose the correct answer from the options given below :
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to: