Given:
\[ 9 \text{ MSD} = 10 \text{ VSD}. \]
The least count (LC) is:
\[ \text{LC} = 1 \text{ MSD} - 1 \text{ VSD}. \]
\[ \text{LC} = 1 \text{ MSD} - \frac{9}{10} \text{ MSD} = \frac{1}{10} \text{ MSD}. \]
\[ \text{LC} = 0.01 \, \text{cm}. \]
Reading of the diameter:
\[ \text{Diameter} = \text{MSR} + \text{LC} \times \text{VSR}. \]
\[ \text{Diameter} = 2 \, \text{cm} + (0.01) \times (2) = 2.02 \, \text{cm}. \]
The volume of the sphere is:
\[ V = \frac{4}{3} \pi \left( \frac{d}{2} \right)^3 = \frac{4}{3} \pi \left( \frac{2.02}{2} \right)^3. \]
\[ V = \frac{4}{3} \pi (1.01)^3 = 4.32 \, \text{cm}^3. \]
The density is:
\[ \text{Density} = \frac{\text{Mass}}{\text{Volume}} = \frac{8.635}{4.32}. \]
\[ \text{Density} \approx 1.998 \, \text{g/cm}^3 \approx 2.00 \, \text{g/cm}^3. \]
Final Answer: 2.0 g/cm3.
Match the LIST-I with LIST-II
LIST-I | LIST-II | ||
---|---|---|---|
A. | Boltzmann constant | I. | \( \text{ML}^2\text{T}^{-1} \) |
B. | Coefficient of viscosity | II. | \( \text{MLT}^{-3}\text{K}^{-1} \) |
C. | Planck's constant | III. | \( \text{ML}^2\text{T}^{-2}\text{K}^{-1} \) |
D. | Thermal conductivity | IV. | \( \text{ML}^{-1}\text{T}^{-1} \) |
Choose the correct answer from the options given below :
A bead of mass \( m \) slides without friction on the wall of a vertical circular hoop of radius \( R \) as shown in figure. The bead moves under the combined action of gravity and a massless spring \( k \) attached to the bottom of the hoop. The equilibrium length of the spring is \( R \). If the bead is released from the top of the hoop with (negligible) zero initial speed, the velocity of the bead, when the length of spring becomes \( R \), would be (spring constant is \( k \), \( g \) is acceleration due to gravity):
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: