Given: The diagonals of a quadrilateral ABCD intersect each other at the point O, such that \(\frac{AO}{BO}=\frac{CO}{DO}\)
To Show: ABCD is a tapezium
Solution: Let us consider the following figure for the given question

Draw a line OE || AB
In ∆ABD, OE || AB
By using the basic proportionality theorem, we obtain
\(\frac{AE}{ED}=\frac{BO}{DO}\) .....(i)
However, it is given that
\(\frac{AO}{OC}=\frac{OB}{OD}\) ......(ii)
From Equation (i) and (ii) we obtain,
\(\frac{AE}{ED}=\frac{AO}{OC}\)
⇒ EO || DC [By the converse of basic proportionality theorem]
⇒ AB || OE || DC
⇒ AB || CD
∴ ABCD is a trapezium.
In the adjoining figure, \(PQ \parallel XY \parallel BC\), \(AP=2\ \text{cm}, PX=1.5\ \text{cm}, BX=4\ \text{cm}\). If \(QY=0.75\ \text{cm}\), then \(AQ+CY =\)
In the adjoining figure, \( \triangle CAB \) is a right triangle, right angled at A and \( AD \perp BC \). Prove that \( \triangle ADB \sim \triangle CDA \). Further, if \( BC = 10 \text{ cm} \) and \( CD = 2 \text{ cm} \), find the length of } \( AD \).
If a line drawn parallel to one side of a triangle intersecting the other two sides in distinct points divides the two sides in the same ratio, then it is parallel to the third side. State and prove the converse of the above statement.

परंपरागत भोजन को लोकप्रिय कैसे बनाया जा सकता है ?
i. उपलब्ध करवाकर
ii. प्रचार-प्रसार द्वारा
iii. बिक्री की विशेष व्यवस्था करके
iv. घर-घर मुफ्त अभियान चलाकर विकल्प: