In the adjoining figure, $\triangle CAB$ is a right triangle, right angled at A and $AD \perp BC$. Prove that $\triangle ADB \sim \triangle CDA$. Further, if $BC = 10$ cm and $CD = 2$ cm, find the length of AD. 
Given:
\( \angle CAB = 90^\circ \), and \( AD \perp BC \)
To Prove:
\( \triangle ADB \sim \triangle CDA \)
Step 1: Prove similarity of triangles
In triangles \( \triangle ADB \) and \( \triangle CDA \):
- \( \angle ADB = \angle CDA = 90^\circ \) (each is a right angle)
- \( \angle BAD = \angle DAC \) (common angle)
Therefore, by AA (Angle-Angle) criterion,
\[ \triangle ADB \sim \triangle CDA \]
Step 2: Use property of similar triangles
From similarity, we use the property that:
\[ \text{(Altitude)}^2 = \text{Product of segments of hypotenuse} \] Here, \( AD^2 = CD \cdot DB \)
Step 3: Use given values
- \( BC = 10 \, \text{cm} \)
- \( CD = 2 \, \text{cm} \)
- Therefore, \( BD = BC - CD = 10 - 2 = 8 \, \text{cm} \)
Now, applying the formula:
\[ AD^2 = CD \cdot DB = 2 \cdot 8 = 16 \Rightarrow AD = \sqrt{16} = 4 \, \text{cm} \]
Final Answer:
\( AD = \mathbf{4 \, \text{cm}} \)
In the given figure, EF and HJ are coded as 30 and 80, respectively. Which one among the given options is most appropriate for the entries marked (i) and (ii)?

In the diagram, the lines QR and ST are parallel to each other. The shortest distance between these two lines is half the shortest distance between the point P and the line QR. What is the ratio of the area of the triangle PST to the area of the trapezium SQRT?
Note: The figure shown is representative

In \(\triangle ABC\), \(DE \parallel BC\). If \(AE = (2x+1)\) cm, \(EC = 4\) cm, \(AD = (x+1)\) cm and \(DB = 3\) cm, then the value of \(x\) is
