>
Exams
>
Mathematics
>
Integral Calculus
>
the derivative of f tan x w r t g sec x at x frac
Question:
The derivative of \( f(\tan x) \) w.r.t. \( g(\sec x) \) at \( x = \frac{\pi}{4} \), where \( f'(1) = 2 \) and \( g'( \sqrt{2} ) = 4 \), is
Show Hint
For derivatives involving composite functions, always apply the chain rule and evaluate at the given points carefully.
MHT CET - 2020
MHT CET
Updated On:
Jan 27, 2026
\( \frac{1}{\sqrt{2}} \)
2
\( \sqrt{2} \)
\( \frac{1}{2} \)
Hide Solution
Verified By Collegedunia
The Correct Option is
A
Solution and Explanation
Step 1: Apply the chain rule.
The derivative of \( f(\tan x) \) w.r.t. \( g(\sec x) \) is given by: \[ \frac{d}{dx} \left[ f(\tan x) \right] = f'( \tan x) \cdot \sec^2 x \] and \[ \frac{d}{dx} \left[ g(\sec x) \right] = g'( \sec x) \cdot \sec x \tan x \]
Step 2: Evaluate at \( x = \frac{\pi}{4} \).
At \( x = \frac{\pi}{4} \), \( \tan x = 1 \) and \( \sec x = \sqrt{2} \). So, substituting the given values: \[ f'( \tan \frac{\pi}{4}) = f'(1) = 2 \quad \text{and} \quad g'( \sec \frac{\pi}{4}) = g'(\sqrt{2}) = 4 \] Thus, \[ \frac{d}{dx} \left[ f(\tan x) \right] \Bigg/ \frac{d}{dx} \left[ g(\sec x) \right] = \frac{2 \cdot \sec^2 \frac{\pi}{4}}{4 \cdot \sec \frac{\pi}{4} \cdot \tan \frac{\pi}{4}} = \frac{2 \cdot 2}{4 \cdot \sqrt{2}} = \frac{1}{\sqrt{2}} \]
Step 3: Conclusion.
The correct answer is \( \frac{1}{\sqrt{2}} \).
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Integral Calculus
If
\[ I(x) = 3\int \frac{dx}{(4x+6)\sqrt{4x^2 + 8x + 3}}, \quad I(0) = \frac{\sqrt{3}}{4}, \]
then find \( I(1) \):
JEE Main - 2026
Mathematics
Integral Calculus
View Solution
If \[ \int e^x \left( \frac{x^2 - 2}{\sqrt{1 + x(1 - x)^{3/2}}} \right) \, dx = f(x) + c \quad \text{and} \quad f(0) = 1 \] find \( f\left( \frac{1}{2} \right) \):
JEE Main - 2026
Mathematics
Integral Calculus
View Solution
Find the area bounded by the curves
\[ x^2 + y^2 = 4 \quad \text{and} \quad x^2 + (y-2)^2 = 4. \]
JEE Main - 2026
Mathematics
Integral Calculus
View Solution
If
\[ \int_{0}^{x} t^2 \sin(x - t)\,dt = x^2, \]
then the sum of values of \( x \), where \( x \in [0,100] \), is:
JEE Main - 2026
Mathematics
Integral Calculus
View Solution
The value of
\[ \int_{\frac{\pi}{2}}^{\pi} \frac{dx}{[x]+4} \]
where \([\,\cdot\,]\) denotes the greatest integer function, is
JEE Main - 2026
Mathematics
Integral Calculus
View Solution
View More Questions
Questions Asked in MHT CET exam
Given the equation: \[ 81 \sin^2 x + 81 \cos^2 x = 30 \] Find the value of \( x \)
.
MHT CET - 2025
Trigonometric Identities
View Solution
If $ f(x) = 2x^2 - 3x + 5 $, find $ f(3) $.
MHT CET - 2025
Functions
View Solution
Evaluate the definite integral: \( \int_{-2}^{2} |x^2 - x - 2| \, dx \)
MHT CET - 2025
Definite Integral
View Solution
There are 6 boys and 4 girls. Arrange their seating arrangement on a round table such that 2 boys and 1 girl can't sit together.
MHT CET - 2025
permutations and combinations
View Solution
Evaluate the integral: \[ \int \frac{1}{\sin^2 2x \cdot \cos^2 2x} \, dx \]
MHT CET - 2025
Trigonometric Identities
View Solution
View More Questions