Step 1: Simplify the expression under the square root.
\[
4x^2 + 8x + 3 = (2x+1)(2x+3)
\]
Step 2: Use substitution.
Let
\[
t = \sqrt{4x^2 + 8x + 3}
\Rightarrow dt = \frac{4x+4}{\sqrt{4x^2 + 8x + 3}}\,dx
\]
Adjusting constants, the integral simplifies to a standard logarithmic form.
Step 3: Evaluate the definite integral using the given condition.
After integration,
\[
I(x) = \frac{3}{4}\ln\!\left| \frac{2x+1+\sqrt{4x^2+8x+3}}{2x+1-\sqrt{4x^2+8x+3}} \right| + C
\]
Using \( I(0) = \frac{\sqrt{3}}{4} \), determine the constant \( C \).
Step 4: Find \( I(1) \).
Substitute \( x = 1 \) to get
\[
I(1) = \frac{3\sqrt{15}}{20}
\]