Step 1: Identify the circles.
The equations represent two circles of radius \(2\).
First circle is centered at \( (0,0) \), second at \( (0,2) \).
Step 2: Find the distance between centers.
\[
d = \sqrt{(0-0)^2 + (2-0)^2} = 2
\]
Step 3: Use the formula for common area of two equal circles.
For two circles of radius \( r \) with distance \( d \) between centers,
\[
\text{Common area} = 2r^2 \cos^{-1}\!\left(\frac{d}{2r}\right)
- \frac{d}{2}\sqrt{4r^2 - d^2}
\]
Step 4: Substitute values.
Here \( r = 2 \), \( d = 2 \):
\[
\text{Area} = 2(4)\cos^{-1}\!\left(\frac{1}{2}\right)
- \frac{2}{2}\sqrt{16 - 4}
\]
\[
= 8\left(\frac{\pi}{3}\right) - \sqrt{12}
= \frac{8\pi}{3} - 2\sqrt{3}
\]
Step 5: Final Answer.
\[
\boxed{\dfrac{8\pi}{3} - 2\sqrt{3}} \text{ Sq. units}
\]