The degree of dissociation (\(\alpha\)) is the ratio of the molar conductivity of the solution (\(\Lambda_m\)) to the limiting molar conductivity (\(\Lambda^\circ\)).
Given:
\( \Lambda_m = \frac{k}{C} = \frac{1.65 \times 10^{-4}}{0.02} = 0.00825 \text{ S cm}^2 \text{mol}^{-1} \)
\( \Lambda^\circ = \lambda^\circ_{\text{H}^+} + \lambda^\circ_{\text{CH}_3\text{COO}^-} = 349.1 + 40.9 = 390 \text{ S cm}^2 \text{mol}^{-1} \)
\( \alpha = \frac{\Lambda_m}{\Lambda^\circ} = \frac{0.00825}{390} \approx 0.021 \)
The degree of dissociation of acetic acid is:
Solution Explanation:
Given:
k = 1.65 × 10-4 S cm-1
C = 0.02 M
λH+∘ = 349.1 S cm2 mol-1
λCH3COO-∘ = 40.9 S cm2 mol-1
Calculate Λm:
Λm = k / C = (1.65 × 10-4) / 0.02 = 0.00825 S cm2 mol-1
Calculate Λ∘:
Λ∘ = λH+∘ + λCH3COO-∘ = 349.1 + 40.9 = 390 S cm2 mol-1
Calculate α (degree of dissociation):
α = Λm / Λ∘ = 0.00825 / 390 ≈ 0.021
Correct Answer:
Option 1: 0.021

Which of the following statement(s) is/are correct about the given compound?
