The relationship between Gibbs Free Energy change (\(\Delta G^\circ\)) and the equilibrium constant (K) is given by:
\( \Delta G^\circ = -RT\ln{K} \)
Here:
Substituting these values:
\( \Delta G^\circ = -1.987 \times 298 \times \ln(10^{-14}) \)
Since \(\ln(10^{-14}) = -14 \ln(10)\) and \(\ln(10) \approx 2.303\):
\( \Delta G^\circ = -1.987 \times 298 \times (-14 \times 2.303) = 19100 \text{ cal mol}^{-1} \)
Converting to kcal mol-1:
\( \Delta G^\circ = 19.1 \text{ kcal mol}^{-1} \)
Thus, the free energy change is approximately \(19.1 \text{ kcal mol}^{-1}\).
Correct Answer:
Option 3: 19.1
Explanation:
1. Self-ionization of Water:
H2O(l) ⇌ H+(aq) + OH-(aq)
2. Ionic Product of Water (Kw):
Kw = [H+][OH-] = 10-14 (at 25°C)
3. Relationship between ΔG° and Kw:
ΔG° = -RT ln(Kw)
where:
4. Convert Temperature to Kelvin:
T = 25°C + 273.15 = 298.15 K
5. Calculate ΔG° in Joules:
ΔG° = -(8.314 J mol-1 K-1) * (298.15 K) * ln(10-14)
ΔG° ≈ 79899.9 J mol-1
6. Convert ΔG° to Kilocalories:
ΔG° (kcal mol-1) = 79899.9 J mol-1 / 4184 J kcal-1
ΔG° ≈ 19.1 kcal mol-1
Ions | Ag+ | K+ | Na+ | H+ | \(\text{NO}_{3}^{-}\) | Cl- | \(\text{SO}^{2-}_{4}\) | OH- | CH3COO- |
\(\Lambda_0\) | 6.2 | 7.4 | 5.0 | 35.0 | 7.2 | 7.6 | 16.0 | 19.9 | 4.1 |
List I | List II | ||
(P) | Titrate: KCl Titrant: AgNO3 | (1) | ![]() |
(Q) | Titrate: AgNO3 Titrant: KCl | (2) | ![]() |
(R) | Titrate: NaOH Titrant: HCl | (3) | ![]() |
(S) | Titrate: NaOH Titrant: CH3COOH | (4) | ![]() |
(5) | ![]() |
Identify the major product (G) in the following reaction